Appendix:
Computations for
”Moral Hazard and Non-Exclusive Contracts”
by A. Bisin and D. Guaitoli*

June 2002

The model is introduced in Section 2 of ”Moral Hazard and Non-Exclusive Contracts.”. Our strategy involves solving for \(d_0 \) as a function of \((c_H, c_L)\) and then substituting the solution i) in the indifference curves and ii) in the incentive constraint.

By the first order condition of the agent’s choice problem, \(d_0 \) solves:

\[
u'(w_0 + d_0) = \pi_a u'(w_H + d_H - d_0) + (1 - \pi_a) u'(w_L + d_L - d_0)\tag{1}\]

Under the assumption that \(u(c) = \ln(c) \), the equation can be written as follows:

\[
\frac{1}{w_0 + d_0} = \frac{\pi_a}{c_H - d_0} + \frac{1 - \pi_a}{c_L - d_0},\tag{2}
\]

where we have used \(c_s = w_s + d_s, s = 0, H, L \).

Therefore \(d_0 \) solves \((c_H - d_0)(c_L - d_0) = (w_0 + d_0)(\pi_a c_L + (1 - \pi_a) c_H - d_0)\), that is the following quadratic equation:

\[
2d_0^2 + \{w_0 - A - (c_H + c_L)\} d_0 + c_H c_L - w_0 A = 0\tag{3}
\]

where \(A = \pi_a c_L + (1 - \pi_a) c_H \).

Let \(d_{01}(c_L, c_H) \) denote a distinct root of the quadratic equation (3) given \((c_L, c_H) \in \mathbb{R}_+^2\). It follows that:

\[
d_{01}(c_L, c_H) = \frac{(c_H + c_L + A - w_0) + \sqrt{(c_H + c_L + A - w_0)^2 - 8(c_H c_L - w_0 A)}}{4},
\]

\[
d_{02}(c_L, c_H) = \frac{(c_H + c_L + A - w_0) - \sqrt{(c_H + c_L + A - w_0)^2 - 8(c_H c_L - w_0 A)}}{4}.
\]

* Ryo Nakayama’s exceptionally skillful assistance in this Appendix is gratefully acknowledged.
We will show next that $d_{01}(c_L, c_H)$ is not in fact a solution of the agent’s optimization problem. This is because either $c_H < d_{01}(c_L, c_H)$ or $c_L < d_{01}(c_L, c_H)$ for any $(c_L, c_H) \in \mathbb{R}^2$; and therefore $d_{01}(c_L, c_H)$ is necessarily associated to negative consumption allocations.

Consider $d_{01}(c_L, c_H)$. Figure 1 draws the contour plot of the function $f_H^1(c_L, c_H) := c_H - d_{01}(c_L, c_H)$ in the (c_H, c_L) space. Notice that $f_H^1(c_L, c_H) = 0$ holds for $c_H = c_L$. In fact, independently from the parametrization we use, it is easy to check that

\begin{align*}
c_s &= d_{01}(c_s, c_s), \quad s = H, L \\
\partial d_{01}(c_L, c_H)/\partial c_H &< 1 \\
\partial d_{01}(c_L, c_H)/\partial c_L &> 1.
\end{align*}

It follows that $f_H^1(c_L, c_H) < 0$ if $c_L > c_H$. Similarly, $f_H^1(c_L, c_H) < 0$ if $c_L < c_H$. As a result,

\begin{align*}
\text{If } c_L > c_H &\Rightarrow c_H - d_{01}(c_L, c_H) < 0 \\
\text{If } c_L < c_H &\Rightarrow c_L - d_{01}(c_L, c_H) < 0.
\end{align*}

We therefore study the indifference curves

\begin{equation}
u(w_0 + d_0) + \pi_a u(w_H + d_H - d_0) + (1 - \pi_a) u(w_L + d_L - d_0) - (a - b) = k
\end{equation}

in the space (c_L, c_H), under the assumption that d_0 solves the quadratic equation (3), and is in fact given by $d_{02}(c_L, c_H)$. Let us denote the utility function by

\begin{equation}
f(c_L, c_H) = \ln(w_0 + d_0) + \pi_a \ln(c_H - d_0) + (1 - \pi_a) \ln(c_L - d_0) - (a - b)
\end{equation}

where $d_{02} = d_{02}(c_L, c_H)$.

Figure 4 shows the contour lines of the function $f(c_L, c_H)$ on the space (c_L, c_H) for the parameter values $(w_0, \pi_a, \pi_b, a) = (5.0, 0.5, 0.2, 0.1)$. These isolines represent the indifference curves for equation (7).

We now study the incentive compatibility constraint. It can be written as

\begin{equation}
u(w_0 + d_0) + \pi_a u(w_H + d_H - d_0) + (1 - \pi_a) u(w_L + d_L - d_0) - a \geq 0
\end{equation}

\begin{equation}2u\left(\frac{1}{2}w_0 + \frac{1}{2}w_H + d_H \right) + (1 - \pi_b)(w_L + d_L))\right)
\end{equation}

where d_0 in general solves:

\begin{equation}u'(w_0 + d_0) = \pi_a u'(w_H + d_H - d_0) + (1 - \pi_a) u'(w_L + d_L - d_0)
\end{equation}
The set of incentive constrained allocations will be obtained by substituting $d_0 = d_{02}(c_L, c_H)$ into inequality (9). It is characterized by the set of $(c_L, c_H) \in \mathbb{R}^2$ that satisfy:

$$g(c_L, c_H) = \ln(w_0 + d_{02}) - \pi_a \ln(c_H - d_{02}) + (1 - \pi_a) \ln(c_L - d_{02}) - (a - b)$$

$$-2 \ln \left[\frac{1}{2} w_0 + \frac{1}{2} (\pi_b c_H + (1 - \pi_b) c_L) \right] \geq 0$$

where $d_0 = d_{02}(c_L, c_H)$

Figure 2 draws a surface graph of $z = g(c_L, c_H)$ on the domain:

$$\left\{ (c_L, c_H) \in \mathbb{R}^2 \middle| c_H - d_{02}(c_L, c_H) > 0, \text{ and } c_L - d_{02}(c_L, c_H) > 0 \right\}$$

given the parameter value $(w_0, \pi_a, \pi_b, a) = (5.0, 0.5, 0.2, 0.1)$. For this parameter values, the graph intersects the plane $z = 0$. Thus, the IC region exists. It is shown by Figure 3.
We now construct an equilibrium with number of active intermediaries \(n \to \infty \). We follow the construction in the text, Section 3, as from Hellwig’s example. Fix \(w := (w_H, w_L) = (12, 2) \). Let \(\theta(c_H, c_L) \) be defined as follows:

\[
\theta(c_H, c_L) := \frac{c_H - w_H + d_0(c_H, c_L)}{c_L - w_L + d_0(c_H, c_L)}
\]

An equilibrium \((c^*_L, c^*_H)\) satisfies the following system equation:

\[
\begin{align*}
g(c_H, c_L) &= 0 \\
\theta(c_H, c_L) &= MRS(c_H, c_L).
\end{align*}
\]

where \(g(c_L, c_H) \geq 0 \) is the incentive compatibility constraint derived above, and \(MRS(c_H, c_L) \) denotes the marginal rate of the substitution of an indifference curve \(f(c_L, c_H) = k \) at the point of \((c_H, c_L)\).

Let us denote \(f_s(c_L, c_H) = \partial f/\partial c_s \) for \(s = H, L \). The MRS is thus given by

\[
MRS(c_L, c_H) = -\frac{f_L(c_L, c_H)}{f_H(c_L, c_H)}.
\]

Taking derivatives of Equation (7) yields

\[
\begin{align*}
f_H(c_L, c_H) &= \frac{d_0H(c_L, c_H)}{w_0 + d_0(c_L, c_H)} + \pi_a \frac{1 - d_0H(c_L, c_H)}{c_H - d_0(c_L, c_H)} \quad (17) \\
f_L(c_L, c_H) &= -\frac{d_0L(c_L, c_H)}{w_0 + d_0(c_L, c_H)} - \pi_a \frac{d_0L(c_L, c_H)}{c_H - d_0(c_L, c_H)} + (1 - \pi_a) \frac{1 - d_0L(c_L, c_H)}{c_L - d_0(c_L, c_H)} \quad (18)
\end{align*}
\]

where \(d_0_s(c_L, c_H) \) denotes the partial derivative of \(d_0(c_L, c_H) \) with respect to \(c_s \) for \(s = L, H \). It is straightforward (though tedious\(^3\)) to obtain the partial derivatives \(d_0_L \) and \(d_0_H \):

\[
\begin{align*}
d_0H(c_L, c_H) &= \frac{1 + (1 - \pi_a)}{4} \cdot \frac{[1 + (1 - \pi_a)]B + 4\{w_0(1 - \pi_a) - c_L\}}{4\sqrt{B^2 - 8(c_Lc_H - w_0A)}} \quad (19) \\
d_0L(c_L, c_H) &= \frac{1 + \pi_a}{4} \cdot \frac{(1 + \pi_a)B + 4\{w_0\pi_a - c_L\}}{4\sqrt{B^2 - 8(c_Lc_H - w_0A)}} \quad (20)
\end{align*}
\]

where \(A \) and \(B \) denote

\[
\begin{align*}
A &= \pi_a c_L + (1 - \pi_a)c_H, \\
B &= c_H + c_L + A - w_0.
\end{align*}
\]

By plugging these equations from (17) to (20) into the MRS equation above, we will have an implicit function, which represents the constraint \(\theta(c_L, c_H) = MRS(c_L, c_H) \). Let us use \(h(c_L, c_H) \) to denote the equation

\[
h(c_L, c_H) = \theta(c_L, c_H) - MRS(c_L, c_H).
\]

\(^3\)The computations have been done by Mathematica.
Now we have to solve the system equation as follows:

\[
\begin{align*}
g(c_L, c_H) &= 0 \\
h(c_L, c_H) &= 0
\end{align*}
\]

Figure 5 illustrates the constraints of \(g = 0 \) and \(h = 0 \) on the \(c_L - c_H \) space. These two curves have two crossing points, say P and Q. The coordinates of the points will solve the system equation above. Only Q is an equilibrium (the analysis in the text, Section 3, for insurance economies applies here; moreover, to point P is associated a negative value for \(d_{02}(c_L^*, c_H^*) \); see Figure 6 where we draw the region where \(d_{02}(c_L^*, c_H^*) < 0 \).) Thus, the coordinate Q is the unique equilibrium \((c_L^*, c_H^*)\) of the system equation. It also provides a positive \(d_{02}(c_L^*, c_H^*) \).

We also solved the system of equations

\[
\begin{align*}
g(c_L, c_H) &= 0 \\
h(c_L, c_H) &= 0
\end{align*}
\]

by a numerical method, using the function \texttt{solve} provided by the \textit{optimize package} in Matlab. Starting from an initial guess \((5.0, 7.0)\), we obtained the equilibrium:

\((c_L^*, c_H^*) = (4.8587, 6.9467)\)

Figure 7 explains the equilibrium construction graphically. The lower dotted line is the tangent line of the indifferent curve \(f(c_L, c_H) = 0 \) at the equilibrium point \((c_L^*, c_H^*) = (4.8587, 6.9467)\). Its slope is given by \(MRS(c_L^*, c_H^*) := -\frac{f_L(c_L^*, c_H^*)}{f_H(c_L^*, c_H^*)} \). It is parallel to the upper dotted line that goes through the point \((w_L, w_H)\) and the point \((c_L^* + d_0(c_L^*, c_H^*), c_H^* + d_0(c_L^*, c_H^*))\). The slope is given by \(\theta(c_L^*, c_H^*) := \frac{c_H^* - w_H + d_0(c_L^*, c_H^*)}{c_L^* - w_L + d_0(c_L^*, c_H^*)} \). These two slopes are same, and therefore \(\theta(c_L^*, c_H^*) = MRS(c_L^*, c_H^*) \).
Figure 1: The contour graph of $f_H(c_L,c_H) = c_H - d_{01}(c_L,c_H)$
Figure 2: The graph of $z = g(c_L, c_H)$
Figure 3: The Set of Incentive Compatible Allocations
Figure 4: The Indifference Curves
Figure 5: $g(c_L, c_H) = 0$ and $h(c_L, c_H) = 0$
Figure 6: The Set of Allocations Satisfying $g(c_L, c_H) > 0$
Figure 7

(cL, cH)

(wH, wL)

(wH - d0, wL - d0)

(cL, cH)

(cL*, cH*)