Managerial Hedging, Equity Ownership, and Firm Value

Viral V. Acharya
London Business School
and CEPR

Alberto Bisin
New York University

November 2005

1Acharya is at the Institute of Finance and Accounting, London Business School, 6 Sussex Place, Regent’s Park, London - NW1 4SA, United Kingdom. Tel: +44 (0)20 7262 5050 x.3535. Email: vacharya@london.edu. Acharya is also a Research Affiliate of the Centre for Economic Policy Research (CEPR). Bisin is at the Department of Economics, New York University, 269 Mercer St., New York, NY 10003. Tel: (212) 998 8916. Email: alberto.bisin@nyu.edu.

2This paper was earlier circulated under the titles “Entrepreneurial Incentives in Stock Market Economies” and “Managerial Hedging and Equity Ownership.” We thank Phillip Bond, Peter DeMarzo, James Dow, Doug Diamond, Douglas Gale, Pierro Gottardi, Denis Gromb, Eric Hilt, Ravi Jagannathan, Li Jin, Kose John, Martin Lettau, Antonio Mello, Gordon Phillips, Adriano Rampini, Raghu Sundaram, Paul Willen, Luigi Zingales, seminar participants at European Finance Association Meetings 2003, Annual Finance Association Meetings 2004, London Business School, Stern School of Business-NYU, Northwestern University, Universiteit van Amsterdam, University of Maryland at College Park, and Washington University-St. Louis for helpful discussions, and Nancy Kleinrock for editorial assistance. We are especially grateful to Yakov Amihud for detailed feedback, to an anonymous referee for comments which have greatly improved the paper, and to Hongjun Yan for excellent research assistance. Bisin thanks the C.V. Starr Center for Applied Economics for technical and financial support.
Abstract

Managerial Hedging, Equity Ownership, and Firm Value

Risk-averse managers can hedge the aggregate component of their exposure to firm’s cash flow risk by trading in financial markets, but cannot hedge their firm-specific exposure. This gives them incentives to load their firm’s cash flows on aggregate risk, that is, to pass up firm-specific projects in favor of standard projects that contain greater aggregate risk. Such risk substitution is a form of moral hazard and it gives rise to excessive aggregate risk in stock markets and excessive correlation of returns across firms and sectors, thereby reducing the risk-sharing among stock market investors.

A contract specifying managerial equity ownership of the firm can be designed to mitigate this moral hazard. We show that the optimal contract might require “negative incentive compensation,” whereby managerial ownership is smaller than in absence of this moral hazard. We characterize the resulting endogenous relationship between managerial ownership and (i) the extent of aggregate risk in the firm’s cash flows, as well as (ii) firm value. We show that these endogenous relationships help explain the shape of the empirically documented relationship between ownership and firm performance.

Keywords: Managerial Compensation, Diversification, Aggregate Risk, Firm-specific Risk, Capital Asset Pricing Model (CAPM).

1 Introduction

Corporate finance theory suggests that managers (and entrepreneurs) receive incentive compensation schemes to align their interests with those of the claimants of their firm. Such schemes determine the share of their own firm that managers must retain in their portfolios. Accordingly, these schemes restrict managers from freely trading their firm, and at times even correlated firms. Similarly, a diverse set of regulations in financial markets also restrict the ability of managers to trade their own firm’s stock. Nonetheless, no regulation restricts or imposes disclosure on the portfolios of managers in dimensions other than the ownership of the managed firm. Also, rarely do boards impose direct contractual limitations on managerial hedging, a phenomenon that Schizer (2000) documents on the basis of off-the-record interviews with investment bankers, and that some authors, most notably, Bebchuk, Fried and Walker (2002), consider as a manifestation of managerial rent-extraction.

Given the lack of such contractual restrictions, risk-averse managers can (and do) to an extent enter financial markets in order to privately hedge their risk exposure to the firm. Evidence of managerial hedging is provided in the law literature by Easterbrook (2002) and in the finance literature by Bettis, Bizjak, and Lemmon (2001). Recent empirical evidence shows however that managers appear to be able to hedge aggregate-risk exposure more effectively than firm-specific risk. For instance, Jin (2002) and Garvey and Milbourn (2002) find that the pay-performance sensitivity of incentive contracts falls with the idiosyncratic risk of firm’s cash flows but is invariant to the market risk. This finding is consistent with managers hedging their aggregate-risk exposure, for example, by trading in market indices or basket products, but being restricted from trading in their own firms.

If the restrictions imposed on managers’ trading in financial markets principally concerns trading in their own firms (as we argued above), then risk-averse managers have an incentive to substitute the unhedgeable, firm-specific risk of their firm’s cash flows for hedgeable, aggregate risks. For example, they may pass up innovative projects with firm-specific risk in favor of standard projects that have greater aggregate risk. Such risk-substitution enables managers to be better diversified, but has perverse implications for aggregate risk-sharing in a general equilibrium context: If all managers in the economy engage in such risk substitution, then the correlation of cash flows of different firms is enhanced, as is, in turn, the aggregate risk in stock markets.

This form of moral hazard induced by incentive compensation, specifically, the substi-

\footnote{Since 1994, in the United States such trades must be disclosed to the Securities and Exchange Commission. Disclosure rules regarding own stock trading have also become stricter with the Sarbanes-Oxley Act of 2002. Furthermore, additional regulation is often imposed by the law of firm’s state of incorporation, by the rules of stock exchange where the firm is listed, and by the firm’s articles of incorporation.}
tution from unhedgeable, firm-specific risk in firm’s cash flows toward hedgeable aggregate
risks, has not been directly studied. Theoretical and empirical literature in corporate finance
has concentrated instead on the incentives of managers to inefficiently alter only the firm-
specific variance by means of diversification activities (Amihud and Lev, 1981, and Lambert,
1986), or to reduce firm’s expected cash flow by expropriation of firm’s assets and diversion
of cash flow (Jensen, 1986).

We cast our risk-substitution moral hazard in a general-equilibrium setting in order to
address the efficiency of endogenous risk composition. We show that in equilibrium, the
level of aggregate risk in the stock market exceeds the first-best level. Nonetheless, it is
constrained (second-best) efficient. We study the positive aspects of this moral hazard
by characterizing the optimal contract designed to address it. We show that the optimal
contract might require “negative incentive compensation,” whereby managerial ownership
is smaller than in absence of the risk-substitution moral hazard.\(^2\) We also characterize the
resulting equilibrium relationship between managerial equity ownership and (i) the extent of
aggregate risk in the firm’s cash flows, as well as (ii) firm’s performance as measured by firm
value. This analysis provides a structural model of the relationships between managerial
ownership, risk composition, expected returns, and firm value, and has important empirical
implications. In particular, we show that these endogenous relationships help explain various
important cross-sectional relationships documented in corporate finance.

A detailed summary of our analysis follows. We study firms in an incomplete-markets,
general-equilibrium Capital Asset Pricing Model (CAPM) economy. The fraction of their
firm that managers and entrepreneurs retain in their portfolios, i.e., their equity ownership of
the firm, is determined contractually. Contractual agreements cannot, however, restrict their
trades in aggregate indexes. Once the ownership structure of firms is designed, agents trade
in financial markets and prices are determined. Subsequently, entrepreneurs and managers
choose the technology of the firm. Firms can produce a given expected cash flow with a given
total risk through the use of different technologies: Some technologies are standard and have
greater betas with respect to the aggregate risk factor and thus have greater aggregate risk;
others are innovative and have lower betas with respect to the aggregate risk factor and thus
have greater firm-specific risk. Technological innovation (modifying the ‘intrinsic’ or the
initial aggregate risk beta of each firm’s project) is costly for entrepreneurs and managers.
The resulting aggregate risk beta is not observed by the firm’s investors.

The choice of the firm’s technology introduces moral hazard. In equilibrium, managers

\(^2\)To be precise, our intended interpretation of the phrase “negative incentive compensation” is as “neg-
avative” incentive-compensation rather than as “negative-incentive” compensation. In other words, the level
of managerial ownership is smaller than that under the first-best, and not such that it provides (negative) incentives to destroy firm value.
retain a positive share of their own firm in their portfolios. But, because they are risk-averse and they can hedge only the aggregate risk exposure by trading in market indexes, managers have an incentive to increase the aggregate risk beta of their firm’s cash flows: By loading their firm’s projects on aggregate risk, managers can reduce their own exposure to unhedgeable firm-specific risks. Such risk-substitution by managers aimed at diversification of their personal portfolios occurs at the cost of reducing the firm’s market value: under CAPM pricing, the market price of the firm’s shares decreases in its aggregate risk beta, for given mean and variance of its cash flow.

We characterize the optimal ownership structure of firms in the face of such moral hazard and the induced equilibrium risk composition of firms’ cash flows. We show that if the firm’s technology is intrinsically more loaded on aggregate risk factors (for example, in procyclical industries), then the optimal ownership scheme provides managers with a lower equity holding of their firms. The risk-substitution moral hazard is particularly severe for firms with high intrinsic aggregate risk loadings. Thus, in equilibrium, a smaller managerial ownership share is optimal for these firms. Indeed, it may even be optimal for these firms to choose equity holdings for managers that are smaller than the optimal contractual holdings in absence of moral hazard, a form of “negative incentive compensation.”

Our analysis has rich empirical implications. First, firms whose entrepreneurs or managers hold a larger share of equity in equilibrium are characterized by less aggregate risk in equilibrium, and hence by low expected returns. This implies, other things being equal, a negative relationship between managerial ownership and expected returns. To our knowledge, such a relationship has yet to be explored empirically.

Second, the risk-substitution moral hazard we study, when combined with an alternate moral hazard, for example, Jensen (1986)’s free cash-flow agency problem, can help explain the hump-shaped cross-sectional relationship between managerial ownership and firm performance, measured by the ratio of the firm’s market value to book value (documented by Morck, Shleifer, and Vishny, 1988, and McConnell and Servaes, 1990, among others). In particular, all else being equal, as the risk-substitution moral hazard becomes more severe, a positive equilibrium relationship is obtained between managerial ownership and performance. In contrast, an increase in the severity of the free cash-flow problem induces a negative relationship between ownership and performance (as also found empirically by Bizjak, Brickley and Coles, 1993). Thus, a possible structural explanation of the hump-shaped relationship consists of recognizing that at low levels of ownership, the dominant moral hazard problem is the risk-substitution one, whereas at high levels of ownership, traditional moral hazard problems like the free cash-flow problem dominate (see Figure 1).

Importantly, this proposed distribution of the relative severity of different moral hazard problems – the dominance of risk substitution at low ownership levels and of the free cash-
flow problem at high ownership levels – has independent implications regarding the shape of the relationship between managerial ownership and diversification. In particular, since risk substitution implies a negative relationship between ownership and diversification, and the free cash-flow problem a positive one, the proposed distribution implies a U-shaped relationship between diversification and ownership. This is in fact what Denis, Denis, and Sarin (1997) find, measuring diversification as the R^2 in a regression of firm’s stock returns on market returns. We interpret this as evidence that our analysis of the risk-substitution moral hazard has the potential to simultaneously explain, as equilibrium relationships, the hump-shaped relationship between firm performance and inside ownership, and the U-shaped relationship between diversification (R^2) and inside ownership.

The choice of risk composition of firms’ cash flows by managers also endogenously affects the level of risk-sharing in the economy. We show that, in equilibrium, managers choose aggregate risk in their firm’s cash flows that exceeds the first-best level. However, market prices and the optimal ownership structure of the firm induce a level of aggregate risk in firms that is constrained (second-best) efficient. That is, the ownership structure is efficient from the point of view of a planner who cannot internalize the externality of managerial activity aimed at substituting firm-specific risk of firm’s cash flows with aggregate risk. Prices in financial markets are not only market clearing, but they also efficiently align the objectives of management and stockholders with those of the constrained social planner: Managers recognize that increasing the aggregate risk of the firm reduces the equilibrium price of the firm’s shares; and, in equilibrium, the fraction of the firm’s shares that managers retain induces them to choose the constrained-efficient firm loadings.

We extend our analysis by considering multiple sectors, whereby the aggregate risk factor can be interpreted as a stock market index. In this setting, we argue that the risk-substitution moral hazard also gives rise to an excessive loading of the firm’s stock returns on the index returns, and, in turn, that it generates an excessive correlation of returns across sectors. Next, we show that the risk-substitution moral hazard is more severe the greater the extent of purely idiosyncratic risk in the firm’s cash flows. Finally, we consider the welfare effects of financial innovations that alter the hedging capability of managers.

Related Literature: The design of entrepreneurial ownership and managerial compensation under asymmetric information and moral hazard has been examined extensively in the corporate finance literature. Diamond and Verrechia (1982) and Ramakrishnan and Thakor (1984) were the first to analyze moral hazard when the firm returns have systematic and idiosyncratic risks. These papers are cast in partial-equilibrium settings. Our principal the-
oretical contribution is rather to embed the agency-theoretic approach of Fama and Miller (1972) and Jensen and Meckling (1976) into a general equilibrium model of the price of risk, such as the CAPM.\footnote{In particular, we follow Willen (1997) in introducing incomplete financial markets and restricted participation in the CAPM economy. In addition, we introduce assets in positive net supply to capture a stock market economy.}

Few general equilibrium analyses of the ownership structure of firms have been developed. Allen and Gale (1988, 1991) study the capital structure of firms in general equilibrium. However, they do not study economies with moral hazard. Magill and Quinzii (2002) and Ou-Yang (2002) do in fact consider the issue of moral hazard between entrepreneurs and investors in a general equilibrium setting. In the set-up of these papers entrepreneurs can affect the variance of their firm’s cash flows and/or their levels, rather than their correlation with aggregate risk, as in our case.

Our structural modeling approach is in the spirit of important antecedents such as Demsetz and Lehn (1985), and, more recently, Himmelberg, Hubbard and Love (2002). Specifically, from the standpoint of providing a structural model linking managerial ownership and firm value, our paper is closest to the recent work of Coles, Lemmon, and Menschke (2003). These authors provide a different structural explanation of the hump-shaped empirical relationship between ownership and performance. We discuss the relationship of our analysis to theirs in Section 4.

The remainder of the paper is structured as follows. Sections 2 and 3 contain the model and analysis of the risk-substitution moral hazard. Section 4 discusses empirical implications and Section 5 addresses the efficiency of equilibrium choices. Section 6 establishes the isomorphism between owner-managed firms and corporations. Sections 7 and 8 consider various extensions. Section 9 concludes. Appendices A–C contain the closed-form expressions for the competitive equilibrium, the expression for welfare criterion, and the proofs, respectively.

2 The Model

We study a perfectly competitive two-period equilibrium economy in which the CAPM pricing rule can be derived.

A subset of the agents in the economy, entrepreneurs and managers, make capital budgeting choices: At a private cost, they can choose their firm’s technology and affect the risk composition of cash flows and, hence, stock returns. The CAPM setting enables us to cast the capital budgeting choice faced by entrepreneurs and managers in terms of a choice
of betas (i.e., the loadings of cash flows) onto traded risk factors: By choosing the betas of firm cash flows, entrepreneurs and managers determine the proportion of aggregate and firm-specific components in the total cash flow risk of firms.

Capital budgeting choices are affected by the equity ownership structure of the firms. To start with, we assume that entrepreneurs and managers are prohibited from trading the stock of their own firms and others in the same sector, but they can trade other financial assets. This endows entrepreneurs and managers with a preference to substitute projects whose cash flow risk cannot be hedged easily with projects whose cash flow risk is readily hedgeable by trading in financial markets. This creates the possibility of there being a risk-substitution moral hazard in the capital budgeting choices of entrepreneurs and managers.

The ownership structure is, in turn, the result of an optimal-contracting problem between entrepreneurs and investors, or between managers and stockholders. We consider different corporate governance structures and the contracting problems induced under these structures. A governance structure determines whether the firm is originally held by entrepreneurs, as in owner-managed firms, or by stockholders, as in corporations. In the case of a corporation, the firm is run by managers, that is, the firm is management-controlled. We concentrate on owner-managed firms for most of the paper. We show in Section 6 that our results extend isomorphically to corporations.

An owner-managed firm is owned ex-ante by an entrepreneur. If the firm’s cash flow betas are observable and the entrepreneur can credibly commit to a choice of these betas when the firm is sold in the stock market, then no moral-hazard concerns arise. Consequently, the entrepreneur’s choice of ownership structure and the cash flow betas are both optimal. If instead the cash flow betas are not observed by the market (i.e., they are private information of the entrepreneur) and the choice of these betas occurs after the firm is sold in the stock market, then the issue of moral hazard arises. In this case, the proportion of the firm that the entrepreneur retains determines the choice of the firm’s cash flow betas. Investors in the market rationally anticipate the mapping between the entrepreneur’s holding of the firm and the choice of betas. Thus, the market price of shares depends upon the publicly observed ownership structure of the firm. Entrepreneurs also realize that the firm’s value will depend on its ownership structure, understanding that discounted prices will be associated with ownership structures that impart incentives to increase the aggregate risk of cash flows.

We introduce formally the simplest version of the model with a representative firm,

5 The difficulty in estimating firm’s stock-return betas is ubiquitous in corporate finance and asset pricing, and in fact, is the primary reason for the portfolio-based approach to tests involving firm betas. Hence, it is reasonable to assume that firm’s cash-flow betas are also not perfectly observed by investors. The literature starting with Amihud and Lev (1981), that focuses on the alteration of firm-specific risk only, also tacitly assumes that either the firm’s volatility or its betas are not perfectly observed by shareholders.
relegating technical details to Appendix A.

The CAPM Economy with a Firm: The economy is populated by \(H \) agents, who live for two periods, 0 and 1. Agent \(h \)'s preferences are represented by a Constant Absolute Risk Aversion (CARA) utility function,

\[
u^h(c_0^h, c_1^h) \equiv -\frac{1}{A} e^{-Ac_0^h} - \frac{1}{A} e^{-Ac_1^h}, \tag{1}\]

where \(c_0^h \) and \(c_1^h \) denote consumption at time 0 and 1, respectively; \(A > 0 \) is the absolute risk-aversion coefficient, which is assumed to be the same for all agents.

Agent 1 in the economy is the representative entrepreneur. The remaining agents, \(h = 2, \ldots, H \), are the investors. The entrepreneur owns a firm, which has a technology that produces a random, normally distributed cash flow at time 1, \(y_1^f \), of the unique consumption good. To emphasize that this is the firm’s cash flow, we will often refer to it as \(y_1^f \). The entrepreneur has a private endowment at time 0, \(y_0^1 \), but no private endowment at time 1 save his ownership of the firm. Each investor \(h = 2, \ldots, H \) has an endowment \(y_0^h \) in period 0, and a random, normally distributed endowment \(y_1^h \) in period 1.

The economy’s risks are spanned by \(N \) orthogonal normally distributed factors, \(x_n, n = 1, \ldots, N \), \(N \geq 2 \). The firm’s cash flow is driven by an aggregate risk factor, \(x_1 \), that is positively correlated with the aggregate endowment of investors, \(\sum_{h=2}^H y_1^h \); and by a second risk factor, \(x_2 \), that is orthogonal to \(x_1 \) and to the aggregate endowment of investors. The second factor is interpreted as the “corporate sector-specific” risk in the economy:6

\[
y_1^f - E(y_1^f) \equiv \beta_1^f x_1 + \beta_2^f x_2. \tag{2}\]

Without loss of generality, we adopt the normalizations: \(E(x_i) = 0, \text{var}(x_i) = 1 \) for \(i = 1, 2 \). The firm’s betas, \(\beta_1^f \) and \(\beta_2^f \), measure the covariance of the firm’s earnings, \(y_1^f \), with risk factors \(x_1 \) and \(x_2 \), respectively:

\[
\beta_j^f = \text{cov}(y_1^f, x_j), \ j = 1, 2. \tag{3}\]

For simplicity we suppose that \(\beta_1^f, \beta_2^f > 0 \). The betas of investor \(h \), \(\beta_1^h \) and \(\beta_2^h \), are defined similarly.

6Risk factor \(x_1 \) is common to both the stock market (the “corporate sector”) and agents’ endowments (for instance, private business income and returns to human capital). For instance, \(x_1 \) could represent a general aggregate productivity index. Extending the analysis to account for multiple industrial sectors, as in Section 7.1, allows us to interpret \(x_1 \) more naturally as a general stock market index, while \(x_2 \) (and \(x_3, x_4, \ldots \)) as the additional risk components of specific sectors.
There are three financial markets: a riskless bond market, where asset 0 with deterministic payoff of 1 is traded, a market where the aggregate factor \(x_1 \) is directly traded, and the stock market where shares of the representative firm \(f \) are traded. The bond and the asset paying off the aggregate factor \(x_1 \) are in zero net supply. The fraction \(w \) of the firm sold in the stock market constitutes the positive supply of the stock. The remaining fraction \((1 - w) \) constitutes the equity ownership of the entrepreneur. If an \(N \)-dimensional factor structure drives risk where \(N > 2 \), then the economy is one of incomplete markets. Trading in financial and stock markets is restricted. In particular, we assume that the entrepreneur, after having placed \(w \) shares on the market, cannot trade the stock of his own firm.\(^7\) However, all agents can trade the riskless bond.

We treat the entrepreneur as a price-taker and the economy as competitive. In particular, we abstract from the ability of entrepreneurs to strategically affect the equilibrium prices. One can interpret the representative entrepreneur as one of a continuum of entrepreneurs. Furthermore, for ease of exposition, we assume a firm’s cash flows are driven only by the aggregate and the corporate sector-specific risk factors, and not by any firm-specific risk factor. That is, we treat the representative firm as equivalent to the ‘corporate sector’ comprised of a continuum of identical firms. In Section 7.2, we distinguish between the firm and the sector by allowing the cash flows of each firm to contain both a sector-specific and a purely firm-specific risk factor. Crucial in these contexts is that either the entrepreneur cannot hedge his sector-specific risk in financial markets (in the model we analyze below), or else he cannot hedge his firm-specific risk (in Section 7.2).

2.1 Equilibrium

Our analysis proceeds recursively. First, given arbitrary equity ownership structures and cash flow betas on risk factors, we solve for the market equilibrium and induced CAPM pricing rule. Then, given the ownership structure, we analyze the capital budgeting problem, i.e., the entrepreneur’s choice of betas. Finally, we study the optimal-contracting problem, which determines the ownership structure of the firm.

Competitive Equilibrium of the CAPM Economy: Given the price of the riskless bond, \(\pi_0 \), the price of the aggregate factor, \(\pi_1 \), and the price of the representative firm, \(p_f \), each agent chooses (i) a consumption allocation at time 0, \(c_0^h \), (ii) portfolio positions in the risk-free bond, \(\theta_0^h \), in the aggregate factor, \(\theta_1^h \), and in the firm, \(\theta_f^h \), and (iii) a consumption

\(^7\)We acknowledge that recent evidence in Bettis, Bizjak, and Lemmon (1999) and Ofek and Yermack (2000) suggests that managers might be able to partly circumvent such trading restrictions. We discuss the case in which managers and entrepreneurs can trade their own stock in Section 8.
allocation at time 1, a random variable c_h^1, to maximize

$$E[u^h(c_0^h, c_1^h)] ≡ -\frac{1}{A}e^{-Ac_0^h} + E\left[-\frac{1}{A}e^{-Ac_1^h}\right].$$

(4)

The budget constraints faced by the investor h, $h > 1$, are:

$$c_0^h = y_0^h - \pi_0\theta_0^h - \pi_1\theta_1^h - p^f\theta_f^h$$

(5)

$$c_1^h = y_1^h + \theta_0^h + \theta_1^hx_1 + \theta_f^fy_1^f.$$

(6)

The entrepreneur, agent $h = 1$, faces the additional constraint that he cannot trade his firm ($\theta_f^1 \equiv 0$), once he sells fraction w at date 0:

$$c_0^1 = y_0^1 + wp^f - \pi_0\theta_0^1 - \pi_1\theta_1^1$$

(7)

$$c_1^1 = \theta_0^1 + \theta_1^1x_1 + (1-w)y_1^f.$$

(8)

Note that the entrepreneur receives proceeds wp^f from selling fraction w of the firm at the market price of p^f.

A competitive equilibrium of the economy is a consumption allocation (c_0^h, c_1^h), for all agents $h = 1, \ldots, H$, that solves the problem of maximizing (4) subject to (5) and (6) for $h > 1$, and the problem of maximizing (4) subject to (7) and (8) for $h = 1$; and prices (π_0, π_1, p^f) such that consumption and financial markets clear:

$$\sum_{h=1}^{H} \left(c_0^h - y_0^h \right) \leq 0,$$

(9)

$$\sum_{h=1}^{H} \left(c_1^h - y_1^h \right) \leq 0 \text{ (with probability 1 over possible states at } t = 1),$$

(10)

$$\sum_{h=1}^{H} \theta_j^h = 0, \ j = 0, 1; \ \sum_{h=2}^{H} \theta_j^h = w.$$

(11)

Given the equity ownership structure of the firm, w, and its cash flow betas β_j^f, $j = 1, 2$, a competitive equilibrium is uniquely determined. We discuss below the salient features of the competitive equilibrium that we exploit in our analysis. Closed-form solutions for equilibrium allocations and prices are reported in Appendix A.

The factor structure of the firm’s cash flow, equation (2), implies that the equilibrium price of the firm can be written as the composition of price of the deterministic component,
the price of the aggregate risk component, and the implicit price of the corporate sector-specific risk of its cash flow:

\[
p' = \pi_0 E(y^f_1) + \pi_1 \beta^f_1 + \pi_2 \beta^f_2,
\]

(12)

where \(\pi_2 \) is equilibrium price of a portfolio paying off \(x_2 \). Given our assumptions, a portfolio paying off \(x_2 \) can be replicated through the trading of available assets by all agents except the entrepreneur; the price \(\pi_2 \) can therefore be determined by no-arbitrage from \(\pi_0, \pi_1 \) and \(p' \). It is convenient to express the properties of equilibrium pricing in terms of the factor prices, \((\pi_0, \pi_1, \pi_2)\).

At the competitive equilibrium, each agent holds three “funds”: the bond, the portion of aggregate endowment that is exposed to traded risk factors (subject to the restricted participation constraints), and the unhedgeable component of the personal endowment. The positive supply of the firm’s stock also translates into positive supplies \(s_j, j = 0, 1, 2 \), of the riskless bond and risk factors:

\[
s_0 = w E(y^f_1),
\]

(13)

\[
s_j = w \beta^f_j, j = 1, 2.
\]

(14)

This follows also from the factor structure of firm’s cash flow (equation 2).

Under this representation, a version of the cross-sectional beta pricing relationship holds: The price of factor \(j \) relative to the price of bond is proportional to the covariance of the factor with the aggregate endowment of the economy and to the positive supply of factor \(j \).

The aggregate endowment relevant for the pricing of factor \(j \) is the sum of the endowments of the agents who can trade factor \(j \). Formally,

\[
\frac{\pi_1}{\pi_0} = \frac{E(x_1) - A}{H} \left[\text{cov} \left((1 - w)y^1, x_1 \right) + w \beta^f_1 \right] = -\frac{A}{H} \sum_{h=1}^{H} \beta^h_1,
\]

(15)

\[
\frac{\pi_2}{\pi_0} = \frac{E(x_2) - A}{H - 1} \left[\text{cov} \left(\sum_{h=2}^{H} y^h_1, x_2 \right) + w \beta^f_2 \right] = -\frac{A}{H - 1} \left(\sum_{h=2}^{H} \beta^h_2 + w \beta^f_2 \right),
\]

(16)

where we have employed the normalization that \(E(x_j) = 0, j = 1, 2 \). Because the entrepreneur cannot trade the stock of his firm, he (effectively) cannot trade sector-specific risk factor \(x_2 \). The relevant aggregate endowment for price of factor \(x_2 \) thus excludes his holding of this risk \((1 - w) \beta^f_2 \). Recall also that asset \(x_1 \) is positively correlated with the aggregate endowment of investors, \(\sum_{h=2}^{H} y^h_1 \); the firm endowment \(y^f_1 \) is positively loaded on asset \(x_1 \); and asset \(x_2 \) is orthogonal to the aggregate endowment of investors. Thus,

\[
\sum_{h=1}^{H} \beta^h_1 > 0, \quad \sum_{h=2}^{H} \beta^h_2 = 0.
\]

(17)
Finally, in equilibrium, the expected utility of agent h is
\[E[u^h(c^h_0, c^h_1)] = -\frac{(1 + \pi_0)}{A} e^{-Ac^h_0(w, \beta^f_1, \beta^f_2, p^f)} , \]
where we stress the fact that the equilibrium time-0 consumption depends on the ownership structure of the firm, its technology, and the price of the firm. This expected utility also depends on the induced equilibrium prices, $(\pi_j, j = 0, 1, 2)$, that we omit for parsimony.

2.2 Capital Budgeting and Equity Ownership Structure

The entrepreneur can, at a private non-pecuniary cost, choose the the risk composition of the firm’s cash flows. Formally, the entrepreneur can choose the betas, β^f_1 and β^f_2, the respective loadings of the firm’s cash flows on the aggregate risk and the corporate sector-specific risk.\(^8\) For simplicity, we assume the entrepreneur’s choice only affects the distribution of the variance of cash flows between the aggregate and the sector-specific risks, but does not alter their expected value or the total variance. That is, the entrepreneur’s choice consists of substituting between projects which are innovative and projects that are otherwise identical but are standard and more exposed to aggregate risk.\(^9\) That is, we assume that
\[(\beta^f_1)^2 + (\beta^f_2)^2 = \nabla, \]
where ∇, the total variance of the cash flow of the firm, is held constant.

The entrepreneur must exert a non-pecuniary costly effort to change the intrinsic composition of the cash flow risk. We assume that the cost is non-pecuniary, and is measured in terms of the time-0 consumption good. More specifically, this cost enters the entrepreneur’s expected utility according to the multiplicative factor $e^{AC(\beta^f_1 - \bar{\beta}^f_1)^2}$, $C > 0$; where $\bar{\beta}^f_1 > 0$ denotes the intrinsic level of β^f_1 (only changes in β^f_1 from its intrinsic level need be considered in the costs, since the associated changes in β^f_2 are determined via equation 19). These assumptions on the cost structure are made for analytical tractability. They imply that the quadratic cost, $C(\beta^f_1 - \bar{\beta}^f_1)^2$, is subtracted from the certainty equivalent of entrepreneur’s time-1 consumption, as in typical CARA-Normal principal-agent set-ups, e.g., Holmstrom and Milgrom (1987) and Laffont and Martimort (2002). Formally, net of capital budgeting costs, the entrepreneur’s expected utility at equilibrium (equation 18) is given by
\[-\frac{(1 + \pi_0)}{A} e^{-A[c^h_0(w, \beta^f_1, \beta^f_2, p^f) - C(\beta^f_1 - \bar{\beta}^f_1)^2]} . \]

\(^8\)Note that the equilibrium price of the firm is affected by the capital budgeting choice. In turn, the expected stock return on the firm is affected as well even though the expected cash flows are not.

\(^9\)In Section 4, we discuss the case in which the manager can also affect expected cash flow, that is, the case in which a free cash-flow problem is added to the risk-substitution moral hazard.
Table 1: The Sequence of Events under Different Governance Structures

<table>
<thead>
<tr>
<th>Governance Structure</th>
<th>Sequence of Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark</td>
<td>Entrepreneurs choose fraction w to sell aggregate risk, loading β_1^f, β_1^f is observable \Rightarrow entrepreneurs trade, markets clear, prices are determined</td>
</tr>
<tr>
<td>Owner-Managed Firms</td>
<td>Entrepreneurs choose fraction w to sell \Rightarrow all agents including entrepreneurs trade, \Rightarrow aggregate risk loading β_1^f, markets clear, prices are determined \Rightarrow managers trade, \Rightarrow aggregate risk loading β_1^f, fraction $(1-w)$ awarded are determined β_1^f is unobservable</td>
</tr>
<tr>
<td>Corporations (Management-Controlled Firms)</td>
<td>Investors choose fraction w to retain, \Rightarrow all agents including managers trade, \Rightarrow aggregate risk loading β_1^f, fraction $(1-w)$ awarded are determined β_1^f is unobservable</td>
</tr>
</tbody>
</table>

Finally, entrepreneurs choose their equity ownership share $(1-w)$ optimally. Table 1 details the exact sequence of events (for the analysis of corporations, see Section 6).

2.3 Benchmark: No Moral Hazard

We first study the determination of the ownership structure and the firm’s technology in the benchmark case in which (i) the entrepreneur owns the firm ex ante, and (ii) investors observe the choice of technology, β_j^f, $j = 1, 2$, so that the entrepreneur can commit to a technology choice when choosing the share w of the firm to sell. Since there is no moral hazard, the choices of β_j^f and w are effectively simultaneous. Given that the firm trades as a composite and not in a piecemeal manner for its different risk loadings, it is a strong assumption that investors observe the risk composition of firm cash flows. Nevertheless, this case serves as a useful benchmark.

When choosing w, entrepreneurs rationally anticipate the unit price p^f at which they can sell this share:

$$p^f = \pi_0 E(y_1^f) + \pi_1 \beta_1^f + \pi_2 \beta_2^f.$$

Each entrepreneur can affect the price of his own single firm, p^f, by his choice of β_1^f through this mapping, but he cannot affect the bond prices or risk factor prices: these prices
are determined at equilibrium by the aggregate choices of the continuum of entrepreneurs. That is, markets are competitive, and all agents including entrepreneurs are price takers: All agents rationally anticipate that the price of a single firm depends on its cash flow betas β_f^j, given the prices of traded assets in the economy.\(^{10}\)

Formally, the representative entrepreneur chooses the share w of the firm to sell, as well as its technology β_f^j to maximize expected utility net of the exerted effort:

$$
\max_{w,\beta_f^1,\beta_f^2} -\frac{(1+\pi_0)}{A} e^{-A[c_{ij}(w,\beta_f^1,\beta_f^2,p_f)-C(\beta_f^i-\bar{\beta}_i)^2]}
$$

subject to:

$$
p_f = \pi_0 E(y_f^1) + \pi_1 \beta_f^1 + \pi_2 \beta_f^2,
$$

$$
(\beta_f^1)^2 + (\beta_f^2)^2 = V,
$$

given the equilibrium prices of the bond and the risk factors, π_0, π_1, and π_2, respectively.

2.4 Moral Hazard

In contrast to this benchmark case, consider now owner-managed firms where the technology choice is not observed by capital market investors. As a result, entrepreneurs cannot commit their technology choice, β_f^j, at the moment they choose the fraction w of their firm to sell in the market; they choose β_f^j after they choose w, and after agents have traded and markets have cleared. While the specific timing of the choice of β_f^j and trading in capital markets is somewhat arbitrary, crucial for our analysis is that the chosen β_f^j are not observed by investors in competitive markets.

Proceeding recursively, we first study the capital budgeting problem of entrepreneurs, which determines β_f^j for a given w. Since w is observed by investors, but β_f^j is not, entrepreneurs anticipate that the price of their own firm p_f will depend only on w and not on their specific choice of β_f^j. Therefore, for given w and p_f, the choice of cash flow betas maximizes the entrepreneur’s expected utility net of the exerted effort:

$$
\max_{\beta_f^1,\beta_f^2} -\frac{(1+\pi_0)}{A} e^{-A[c_{ij}(w,\beta_f^1,\beta_f^2,p_f)-C(\beta_f^i-\bar{\beta}_i)^2]}
$$

\(^{10}\)As discussed in Section 2 and assumed in Section 2.1, the entrepreneur takes as given the price of the riskless bond, π_0, the price of the aggregate risk factor, π_1, and the price of the representative firm, p_f. The composition of p_f, equation (12), implies that, in addition to π_0 and π_1, the entrepreneur effectively takes as given the price of the sector-specific risk factor, π_2.

The price of entrepreneur’s own firm is also denoted as p_f for parsimony of notation. The entrepreneur recognizes that this price depends on the risk composition of his firm’s cash flows, for given prices of risk factors. In equilibrium, the price of each entrepreneur’s firm equals the price of the representative firm.
subject to

\[(\beta_1^f)^2 + (\beta_2^f)^2 = V. \] (25)

Because the price of the firm \(p^f \) does not affect the solution of this capital budgeting problem, we denote the solution simply as \(\beta^f_j(w) \).

We now consider the choice of equity ownership by entrepreneurs. An entrepreneur’s proceeds from selling share \(w \) of his firm are \(wp^f \). Hence, he perceives a direct effect of the choice of \(w \) on his proceeds. In addition, the entrepreneur expects investors to rationally anticipate the equilibrium map between ownership structure and the risk composition of the firm, \(\beta^f_j(w) \), which results from the solution of the capital budgeting problem. The entrepreneur therefore also perceives an indirect effect of his choice of \(w \) on the price of the firm \(p^f \) (equation 12) through its effect on his future choice of \(\beta^f_j \) via the map \(\beta^f_j(w) \).

Formally, the entrepreneur chooses \(w \) to maximize the expected utility net of effort:

\[
\max_w -\frac{(1+\pi_0)}{A} e^{-A[\phi(w,\beta_1^f,\beta_2^f, p^f) - C(\beta_1^f - \bar{\beta}_1^f)^2]} \] (26)

subject to:

\[
p^f = \pi_0 E(y_1^f) + \pi_1 \beta_1^f + \pi_2 \beta_2^f, \] (27)

\[\beta^f_j = \beta^f_j(w), \ j = 1, 2, \] (28)

given \(\pi_j, \ j = 0, 1, 2. \)

3 Equilibrium Equity Ownership and Risk

We characterize below (i) the entrepreneurial choice of the aggregate risk beta of the firm’s cash flows, \(\beta_1^f \); and (ii) the optimal equity ownership of firms, measured by the fraction \((1 - w)\) retained by entrepreneurs. We first consider the benchmark case when investors can observe the firm’s risk loadings and hence there is no moral hazard.

11 This equilibrium concept is related to the one introduced in the context of general equilibrium theory with asymmetric information by Prescott and Townsend (1984). The formulation we adopt is however Magill and Quinzii (2002)’s who, in a related setting, explicitly formulate the anticipatory behavior of entrepreneurs as “rational conjectures.” Bisin and Gottardi (1999) study a different equilibrium concept appropriate when the equity ownership structure is also not observable.
Proposition 1 For owner-managed firms with no moral hazard, in equilibrium, the loading on the aggregate risk factor, denoted β_1^*, is reduced from its initial value $\bar{\beta}_1^f$:

$$
\beta_1^* = \bar{\beta}_1^f - \frac{A\pi_0}{2CH(1+\pi_0)} \sum_{h=2}^H \beta_h^s < \bar{\beta}_1^f.
$$

Each entrepreneur sells fraction w^* of the firm, retaining fraction

$$
(1 - w^*) = \frac{1}{H}.
$$

In the absence of risk-substitution moral hazard, each entrepreneur simply owns the market fraction of the firm. The entrepreneur rationally anticipates that increasing the aggregate risk of the firm, thereby reducing the firm-specific risk, reduces the equilibrium value of its shares (equation 12). Hence, in equilibrium, the entrepreneur optimally reduces the aggregate risk loading of the firm, choosing $\beta_1^* < \bar{\beta}_1^f$.

Now consider owner-managed firms when investors do not observe the firm’s risk loadings. In this case, entrepreneurs do not fully internalize the cost borne by the rest of the economy due to an increase in their firm’s aggregate risk beta. In particular, entrepreneurs privately prefer to increase their firm’s aggregate risk beta in order to reduce the fraction of their own wealth that is composed of unhedgeable risk. However, such risk-substitution is costly for investors: Investors’ endowments are exposed to aggregate risk, but not to corporate sector-specific risk. The result is that investors can bear the corporate sector-specific risk supplied by the stock market at a lower welfare loss than they can bear the aggregate risk.

Entrepreneurs can, however, design the ownership structure to reduce the extent of inefficient risk substitution, i.e., to create an incentive to decrease the aggregate risk beta of cash flows. We characterize the equilibrium loading on aggregate risk, β_1^f, and also the condition on the initial loading $\bar{\beta}_1^f$ that guarantees the equilibrium level of ownership retained by the entrepreneur is smaller than the market share.

Proposition 2 For owner-managed firms with moral hazard, in equilibrium, the loading on the aggregate risk factor, β_1^{**}, is such that

$$
\beta_1^* < \beta_1^{**} < \bar{\beta}_1^f.
$$

The fraction of the firm retained by the entrepreneur, $(1 - w^{**})$, is such that

$$
(1 - w^{**}) < (1 - w^*)
$$
\[
\beta_1^f > K \sum_{h=2}^{H} \beta_h^1, \quad \text{where} \quad K = 1 + \frac{A}{4CH^2}.
\]

(33)

At equilibrium, the optimal choice of \(w \) induces entrepreneurs to decrease the aggregate cash flow beta of their firms, \(\beta_1^{**} < \beta_1^f \), but not fully to the level without moral hazard, \(\beta_1^{*} < \beta_1^{**} \). When the intrinsic aggregate risk beta of the firm \(\beta_1^f \) is sufficiently high and/or the aggregate risk beta of investors’ endowments \(\sum_{h=2}^{H} \beta_h \) is sufficiently low, condition (33) is satisfied and entrepreneurs hold a smaller fraction of the firm compared to the benchmark case, \((1 - w^{**}) < (1 - w^{*}) \).

This result is important in the context of our analysis. It demonstrates that, under certain conditions, the optimal contract designed to mitigate the risk-substitution moral hazard requires entrepreneurs to hold a smaller fraction of the firm than they would hold if such moral hazard were not to be present. We interpret this as a sort of “negative incentive compensation”: ownership can in fact have adverse incentive effects on managers. As a consequence, firms where the risk-substitution problem is most severe, for example, pro-cyclical firms which intrinsically have high aggregate risk, should optimally design contracts offering a smaller equity ownership to entrepreneurs. There exists no closed-form characterization for the equilibrium dependence of equity ownership on the firm’s intrinsic aggregate-risk loading. Hence, we have confirmed this implication numerically; see Figure 2.

Before we discuss the empirical implications of Proposition 2, we discuss condition (33) underlying the negative incentive compensation. We present its intuitive interpretation and discuss its reasonableness from an empirical standpoint.\(^\text{12}\)

On the one hand, entrepreneurs benefit from increasing aggregate risk of firm cash flows because it reduces their exposure to unhedgeable, firm-specific risk. On the other hand, entrepreneurs also face a cost from doing so. In equilibrium, entrepreneurs diversify their personal portfolio by selling the aggregate risk component of their wealth, \((1 - w)\beta_1^f \), at the given price \(\pi_1 \), and retain only the average market component of this risk, \(\frac{1}{H} \sum_{h=1}^{H} \beta_h^1 \).

Since aggregate risk is disliked by agents, it is sold at a negative price and its re-balancing is costly for entrepreneurs. In other words, the price of supplying aggregate risk to the markets counteracts the entrepreneurial incentives to increase the aggregate risk of cash flows.

The effectiveness of using ownership structure to pre-commit a reduction in the aggregate cash flow beta depends upon the relative strengths of these two conflicting effects. The price of aggregate risk \(\pi_1 \) increases (in magnitude) with the aggregate risk beta of investors’

\(^{12}\text{The formal argument is based on the mixed partial derivative of entrepreneurial objective (equation 24) with respect to the aggregate risk beta of cash flows, } \beta_1^f, \text{ and the share retained, } (1 - w). \)
endowments, $\sum_{h=2}^{H} \beta^h_1$. When $\sum_{h=2}^{H} \beta^h_1$ is sufficiently low relative to $\bar{\beta}^f_1$, the cost of hedging aggregate risk is not too high and entrepreneurs can diversify easily by personal trading. In this case, the only feasible pre-commitment device is one that exposes entrepreneurs to less unhedgeable risk than in the benchmark case: Entrepreneurial ownership is lower than in the benchmark case and this itself provides diversification to the entrepreneur.

However, when the aggregate risk exposure of the investors’ endowment $\sum_{h=2}^{H} \beta^h_1$ is high, it is costly for entrepreneurs to sell aggregate risk in capital markets. The optimal pre-commitment device is now one where the entrepreneur retains a fraction of the firm that exceeds the market share. This induces the entrepreneur to diversify by trading in capital markets: Since the quantity of aggregate risk the entrepreneur has to sell increases in the aggregate risk beta of the firm, the entrepreneur is incentivized to choose a smaller aggregate beta. Formally, a sufficient condition for this case to arise is $\bar{\beta}^f_1 < \sum_{h=2}^{H} \beta^h_1$.

To better understand condition (33) from an empirical standpoint, suppose that the aggregate risk factor x_1 is perfectly correlated with $\sum_{h=2}^{H} y^h_1$, the non-corporate sector (investors’) endowment of the economy. Then, x_1 could be interpreted as the Gross Domestic Product (GDP) minus the corporate sector output, but normalized to have unit variance. Thus, $\sum_{h=2}^{H} \beta^h_1$ equals $\sqrt{\bar{\nu}_{nc}}$, where $\bar{\nu}_{nc}$ is the variance of the non-corporate sector endowment. Furthermore, $\bar{\beta}^f_1$ equals $\rho \sqrt{\bar{\nu}}$, where $\bar{\nu}$ is the variance of the corporate sector endowment, and ρ is the correlation between corporate sector and non-corporate sector endowments. Finally, let H go to infinity keeping $\bar{\nu}_{nc}$ and ρ constant. Then, K tends to unity, and condition (33) requires that $\rho^2 \bar{\nu} > \bar{\nu}_{nc}$, or in other words, that the correlation of corporate sector cash flows and non-corporate sector endowments be high and that the variability of corporate sector cash flows be large relative to the variability of non-corporate sector endowments. Empirical evidence suggests that the corporate sector output of economies is highly correlated with the non-corporate sector output, and is much more variable.

13 This can be achieved for example by distributing investors into a continuum of cohorts that are ranked by the correlation of investors’ endowment with corporate sector endowment, the correlations ranging from a minimum negative value to a maximum positive value.

14 For example, based on data from the National Income and Product Accounts Table, the de-trended corporate sector output (growth rate) in the United States during 1946–2003 is approximately 1.6 (1.3) times as variable as the de-trended non-corporate sector output (growth rate), where the non-corporate sector output is measured as the difference between the Gross Domestic Product and the corporate sector output. The corporate and the non-corporate sector outputs are almost perfectly correlated for the United States. These calculations suggest that condition $\rho^2 \bar{\nu} > \bar{\nu}_{nc}$ is satisfied for the United States.
4 Empirical Implications

We discuss in this section the empirical implications of Proposition 2.\(^{15}\)

The equilibrium relationship between equity ownership \((1 - w^{**})\) and firm's intrinsic aggregate-risk loading \(\bar{\beta}^f_1\) is negative, as implied by Proposition 2. This relationship, illustrated in Figure 2, represents an interesting theoretical result of our analysis. While intrinsic aggregate-risk loadings are exogenous parameters in our model, they are not directly observable. However, our analysis also identifies structural relationships between managerial ownership, risk composition, expected returns, and firm value. These relationships have several important empirical implications.

First, consider the equilibrium relationship between managerial ownership \((1 - w^{**})\) and firm's risk composition \(\beta^f_1 \left(w^{**} \right)\). This relationship is numerically illustrated in Figure 3 which shows that firms whose managers have larger equity ownership in equilibrium are characterized by less aggregate risk in equilibrium. This is a structural relationship between two endogenous variables of our model: Any combination of ownership and risk results from the solution of the optimal contracting problem.\(^{16}\) In our economy, aggregate risk loading of the firm is linked to the firm's expected return through the CAPM pricing rule. Therefore, this analysis implies, other things being equal, a negative relationship between managerial ownership and expected returns. To our knowledge, this agency-theoretic implication for asset prices and returns has not yet been explored empirically.

The second and most important implication of our results concerns the widely documented cross-sectional relationship between managerial ownership and firm's performance, measured by the ratio of the firm's market value to book value, that is, the inverse of Tobin's Q. The uncovered relationship between performance and inside ownership is non-monotonic: the market to book ratio first increases (Tobin's Q decreases) with inside ownership for low ownership levels, and it decreases for higher ownership levels. Early evidence of this relationship includes Morck, Shleifer, and Vishny (1988), McConnell and Servaes (1990, 1995), and Hermalin and Weisbach (1991), and McConnell, Servaes, and Lins (2004) provide a more recent re-assessment confirming this evidence. See, for instance, Figure 1 in Morck, Shleifer and Vishny (1988), Page 301.

It is a theoretical challenge to explain this non-monotonic relationship between perfor-

\(^{15}\)In this discussion, we use “managers” and “entrepreneurs” interchangeably. In Section 6, we show formally that the analysis of owner-managed firms extends isomorphically to the case of “corporations” where investors hire a manager to run the firm, and optimally design his incentive compensation.

\(^{16}\)This structural modeling approach is similar in spirit to important antecedents such as Demsetz and Lehn (1985), Himmelberg, Hubbard and Love (2002), Core, Guay and Larcker (2003), and especially in the context of this paper, Coles, Lemmon and Meschke (2003).
mance and inside ownership as an equilibrium relationship. This is because in many agency-theoretic problems (though not all), the endogenous relationship between firm value and ownership is negative: higher ownership is required only to address a more severe agency problem. In contrast, our result of negative incentive compensation implies that as the risk-substitution problem becomes more severe, ownership is in fact lowered in equilibrium. These two facts put together can provide a structural explanation for the non-monotonicity: in particular, our analysis of ownership and risk-substitution moral hazard can explain the positive relationship between firm value and ownership.

To see this implication, it is useful to consider a more general model of managerial choice than the one we have studied so far. In particular, we add to our model a version of Jensen’s (1986) free cash flow problem. The manager, besides choosing the firm’s risk loadings, can also divert part of the firm’s cash flow into private benefits. Notable examples of this agency problem include entrenchment, empire building, as well as a forthright diversion of cash flow into private accounts. Formally, the manager can give up consuming a fraction \(\eta \) of firm’s expected cash flow, \(E(y_f^I) \), at a non-pecuniary cost \(C_2(\eta E(y_f^I))^2 \) to be added to the cost of his choice of betas. The parameter \(\eta \) thus captures the severity of free cash flow problem.

As noted before, in an economy with only the free cash flow problem, inside ownership increases as the severity of the cash problem grows, as has also been documented empirically by Bizjak, Brickley and Coles (1993). Simultaneously, firm value decreases because of greater cash flow expropriation and greater cost of incentive compensation. As a consequence, the free cash flow agency problem could explain the negatively-sloped part of the empirical relationship between ownership and performance, but can not explain the positive slope observed for small ownership levels.

Consider now the economy with both free cash flow and risk-substitution moral hazards. In this economy, an increase in managerial ownership has potentially two contrasting ef-

17Empirical studies documenting versions of the free cash flow problem include Lang, Stulz, and Walking (1991), Mann and Sicherman (1991), and Blanchard, Lopez-de-Silanez, and Shleifer (1994).

18The manager’s utility function becomes

\[
-\frac{(1+\pi_0)A}{A} e^{-\frac{A}{A} \left[c_0^w(w,\beta_f^1,\beta_f^2,\eta,p_f) + C_1(\beta_f^1-\beta_f^2)^2 - C_2(\eta E(y_f^I))^2 \right] .}
\]

Note that consumption at time 0 now depends on \(\eta \). We omit the straightforward, even if notationally cumbersome, analysis required to study this economy. It should be pointed out that one advantage of adding the free cash flow problem is to dispose of the (counterfactual) literal implication of Proposition 2 that the fraction of the firm awarded to the manager might be smaller than the market share.

19Depending on the specific form of the costs of corporate control, the optimal contract in the free cash flow problem could be such that no incentive compensation is provided for small enough agency problems. In this, case we would observe a mass of firms with no ownership and relatively low market to book ratios, but not the documented positive relationship.

19
fects: increased ownership ameliorates the free cash flow problem while inducing a greater substitution from firm-specific risk toward aggregate risk. Keeping constant the extent of the free cash flow problem η, the higher the initial loading on the aggregate risk factor β_1', the lower the inside ownership and the lower the firm value in equilibrium. The resulting positive relationship between performance and ownership is illustrated in Figure 4 for the parameters of our basic calibration, where performance is measured by market value (book value is implicitly assumed constant in our whole analysis).

Next, postulate that severe free cash flow problem (high η) tends to induce relatively large inside ownership levels at equilibrium. Then, we can explain the positive relationship between ownership and performance as illustrated in Figure 1: At low ownership levels, the relationship between ownership and performance is driven by the optimal ownership contract that trades off a small free cash flow problem with a pre-dominant risk-substitution problem. In contrast, high inside ownership levels would be an optimal contracting response to a relatively dominant free cash flow agency problem. In turn, this explains the negative relationship between ownership and performance at high ownership levels. Note that, in this range, the excessive substitution of firm-specific risk for aggregate risk reinforces the reduction in market value of the firm by raising the expected return.20

In terms of underlying structural parameters, this explanation relies on the thesis that free cash flow problem (η) and risk-substitution problem (β_1') are negatively correlated. In the left of Figure 1, where the relationship between performance and ownership slopes upward, initial beta on the aggregate risk factor, β_1', is large but severity of the free cash flow problem, η, is low. The relationship thus slopes upward until β_1' declines sufficiently and η increases enough to dominate. Then, moving to the right in Figure 1, aggregate risk beta is low but cash flow appropriation is high and increases further, so that equilibrium ownership rises but firm value declines.

The positive relationship between managerial ownership and performance as measured by firm value for low levels of ownership (Figure 4) is also intimately tied to the negative relationship between aggregate risk and ownership obtained in our model (Figure 3). In other words, firms with a low managerial ownership in equilibrium should display low valuation, high aggregate risk, and hence, also high expected returns. Evidence for these implications thus constitutes indirect evidence in support of our structural explanation of the hump-shaped relationship. Such supporting evidence is provided, for example, by Lamont and

20A different explanation of the hump-shaped relationship between managerial ownership and performance is provided by Coles, Lemmon, and Meschke (2003). Their analysis is also based on a structural model of agency, but it exploits the variation of the optimal incentive compensation contract with the productivity of firm capital and the productivity of managerial effort rather than the relative dominance of different moral hazard components, as in our case. Importantly, Coles, Lemmon, and Meschke (2003) support their analysis by successfully calibrating the model to U.S. firm data.
Polk (2001) who find that “diversification discount,” the low valuation of diversified firms, reflects in substantial part high expected returns in addition to low expected cash flows.

Finally, evidence from the literature that links managerial ownership to diversifying activities also bears on our analysis. In fact, our proposed distribution of the relative severity of different moral hazard problems – the dominance of risk substitution at low ownership levels and of the free cash-flow problem at high ownership levels – has precise implications regarding the shape of the relationship between managerial ownership and diversification.

Typically, in the empirical literature, the diversifying activities of managers are quantified as R^2 in a regression of firm-level stock returns on market returns. By Figure 3, risk substitution implies a negative endogenous relationship of inside ownership with the aggregate risk of firm cash flows, and, by implication, with the R^2. The free cash flow moral hazard implies instead a positive relationship between inside ownership and aggregate risk. Therefore, if risk substitution is dominant at low levels of ownership and the free cash-flow problem is dominant at high levels of ownership, then we should observe in data a non-linear U-shaped relationship between R^2 and ownership. This is in fact what Denis, Denis, and Sarin (1997) find, when regressing the R^2 on OWN, the equity ownership of officers and directors, as well as on OWN squared. Specifically, Denis, Denis, and Sarin find that the coefficient on OWN is negative, but that on its square is positive. That is, a negative relationship between R^2 and OWN holds at low to moderate levels of OWN, but at very high levels of OWN, there is in fact a positive relationship between diversification and OWN.22

We interpret this as evidence that our analysis of the risk-substitution moral hazard has the potential to explain, as equilibrium relationships, various important cross-sectional relationships documented in corporate finance. Specifically, it can simultaneously explain the hump-shaped relationship between firm performance and inside ownership, and the U-shaped relationship between diversification (R^2) and inside ownership.

21 A higher R^2 can result from a substitution of firm-specific risk with aggregate risk, as we consider, but also from a reduction of firm-specific risk with no effect on aggregate risk.

22 Previous studies restricting their analysis to a linear relationship between diversification and ownership are inconclusive: Amihud and Lev (1981) document a significant negative relationship between R^2 from equity accounting returns and the equity ownership of officers and directors, while May (1995) finds a positive relationship between diversification and the ratio of the manager’s value of share ownership to total wealth. Aggarwal and Samwick (2003) test a structural model wherein diversification can arise either due to managerial risk-aversion or due to a managerial desire to “build empires.” Their empirical results show a positive relationship between firm diversification and the extent of the manager’s incentive compensation, leading them to conclude that managers diversify in response to changes in empire-building motives rather than to reduce exposure to risk.
5 Welfare Properties

In this section, we address the following welfare questions: Do entrepreneurs hold too much or too little of their firms? Is there efficiency in the induced equilibrium loading of the firms’ cash flows on the aggregate risk factor? Does the stock market contribute additional risk to the aggregate endowment risk of the economy? Is such additional risk inefficient? Not surprisingly, the presence of moral hazard implies that, in equilibrium, entrepreneurs diversify inefficiently by over-loading their firms on aggregate risk factors, relative to the first-best. However, the relevant welfare question is as follows: Could a social planner regulate the firms’ equity ownership structure so as to improve aggregate welfare, given the constraint that entrepreneurs will then choose technology to maximize their expected utility?

In CAPM economies, it is convenient to measure the welfare associated with the equilibrium of an economy relative to a benchmark. We take the welfare of the autarkic economy as this benchmark, where agents only trade the bond (see Willen, 1997, and Acharya and Bisin, 2000) and no capital budgeting takes place. The welfare of our economy, which we denote μ, is defined as the minimal aggregate transfer, in terms of time-0 consumption, needed to equate an agent’s expected utility at equilibrium with his expected utility at autarky. Formally, let $[c_0, c_1] \equiv [c^h_0, c^h_1]_{h \in H}$ denote the competitive equilibrium allocation in the economy; and let $[c_0^a, c_1^a]$ be the equilibrium allocation at autarky. Let π_0 be the equilibrium price of the bond, and π_0^a the price of the bond at autarky. Let $U^h(c^h_0, c^h_1)$ denote the expected equilibrium utility of agent h, and let $U^ah(c^ah_0, c^ah_1)$ be the corresponding expected utility at autarky. The aggregate compensating transfer, μ, is defined as

$$\mu = \sum_{h=1}^{H} \mu^h, \quad (34)$$

where the individual compensating transfer, μ^h, is given by the solution to

$$U^{a1}(c^{a1}_0 + \mu^1, c^{a1}_1) = U^1(c^1_0 - C(\beta_1^f - \bar{\beta}_1^f)^2, c^1_1), \quad \text{and} \quad (35)$$

$$U^{ah}(c^{ah}_0 + \mu^h, c^{ah}_1) = U^h(c^h_0, c^h_1), \quad \text{for } h = 2, \ldots, H. \quad (36)$$

We show in Appendix B that

$$\mu = -\frac{H}{A} \ln \frac{1 + \pi_0}{1 + \pi_0^a} - C(\beta_1^f - \bar{\beta}_1^f)^2 \cdot (37)$$

Therefore, an economy is more efficient with a low equilibrium price of the risk-free asset and a correspondingly high risk-free return. This is because the risk-free rate increases when
precautionary savings fall. This occurs when financial markets serve to hedge away the majority of agents’ risk exposures.

Efficiency of Equity Ownership and Risk Loadings: The fraction w of the firm held by capital market investors, and the loadings β_f^j of the firm’s cash flows on the economy’s risk factors, are *first-best efficient* if they maximize the aggregate welfare index μ, taking into account the effects of w and β_f^j on competitive equilibrium prices. Formally, the first-best efficient choices of w and β_f^j maximize μ:23

$$
\max_{w,\beta_f^1,\beta_f^2} - \frac{H}{A} \ln \frac{1+p_0}{1+p_a} - C(\beta_f^1 - \bar{\beta}_f^1)^2
$$

subject to

$$
(\beta_f^1)^2 + (\beta_f^2)^2 = \mathcal{V},
$$

where π_0, the equilibrium price of risk-free asset, is given by equation (A.9), Appendix A.

Proposition 3 For owner-managed firms with no moral hazard, the equilibrium fraction of the firm held by investors, w^*, and aggregate risk loading, β_1^*, are first-best efficient.

In the absence of moral hazard, this result on the first-best efficiency is intuitive. Consider now the situation in which a moral hazard arises: owner-managed firms for which risk loadings are not observed by investors. In this case, first-best efficiency is too strong a welfare requirement.

For the equilibrium to satisfy constrained efficiency, (i) the maps $\beta_f^j(w)$, defined in equations (24)–(25) of Section 2.4, determine the risk factor loadings of the firm’s cash flows, while (ii) the fraction of the firm held by capital market investors w maximizes the aggregate welfare index μ, given $\beta_f^j(w)$ and taking into account the effects of w and β_f^j on competitive equilibrium prices. Formally, the constrained-efficient choice of w maximizes μ:

$$
\max_w - \frac{H}{A} \ln \frac{1+p_0}{1+p_a} - C(\beta_f^1 - \bar{\beta}_f^1)^2
$$

subject to

$$
\beta_f^j = \beta_f^j(w), \ j = 1, 2,
$$

where π_0, the equilibrium price of risk-free asset, is given by equation (A.9), Appendix A.

23Note that the solution to the first-best problem as well as the constrained-efficiency problem is independent of π_0, so that the choice of benchmark in the definition of μ is arbitrary.
Proposition 4 For owner-managed firms with moral hazard, the equilibrium fraction of the firm held by investors, \(w^{**} \), and the aggregate risk loading, \(\beta_1^{**} \), are constrained efficient.

To summarize, the private choice of entrepreneurs leads to socially optimal (second-best) outcomes. That is, the price mechanism efficiently aligns the objectives of entrepreneurs with those of the (constrained) social planner when the former designs the equity ownership structure to pre-commit capital budgeting choices. Entrepreneurs, while price-takers for prices of the risk factors, nevertheless face a price schedule for the firms they own and manage. They recognize that increasing the aggregate risk of the firm reduces the equilibrium value of its shares. In equilibrium, motivated by the capital gains from reducing this aggregate risk component, entrepreneurs choose equity ownership structures that enable a pre-commitment of the (constrained) efficient choices of cash flow loadings on risk factors.

6 Corporations

We define a corporation as a governance structure in which it is stockholders who hire a manager and choose the fraction \((1 - w)\) of equity with which to endow the manager. For a corporation, it is natural to interpret this stock grant as “incentive compensation.” For the sake of consistency however, we refer to it as the firm’s ownership structure. In addition, the manager must be given a time-0 compensation \(W\) (in terms of time-0 consumption good units), such that the manager’s utility from time-0 compensation and the stock grant equals his reservation utility value of \(\bar{W}\). We assume that the payment of this time-0 compensation is borne equally by all stockholders. The manager chooses the firm’s cash flow betas after receiving the stock award and after trading has taken place.

The analysis of corporations mirrors the analysis of owner-managed firms. The capital budgeting problem again determines a map at equilibrium between managerial equity ownership, \(w\), and the manager’s choice of risk composition, \(\beta_j^f(w)\), \(j = 1, 2\). Stockholders then choose \(w\) and \(W\) to maximize the sum of their individual welfares, \(\sum_{h=2}^{H} \mu^h\), where the individual compensating transfer, \(\mu^h\), is defined in equation (36) and characterized in

\[c_0^h = y_0^h - \frac{W}{H - 1} - \pi_0 \theta_0^h - \pi_1 \theta_1^h - p_f \theta_f^h, \quad h > 1\]
\[c_0^1 = y_0^1 + W - \pi_0 \theta_0^1 - \pi_1 \theta_1^1\]

However, for parsimony, we use the same notation \(\beta_j^f(w)\) as that for owner-managed firms with moral hazard. We show in Appendix C that the entrepreneur’s choice \(\beta_j^f\) for a given \(w\) in an owner-managed firm is identical to the manager’s choice of \(\beta_j^f\) in a corporation for that same \(w\).
equation (B.2):

$$\max_{w,W} \sum_{h=2}^{H} \mu^h \equiv \sum_{h=2}^{H} \left[c^h_0 - c^h_{ah} - \frac{1}{A} \ln \frac{1+\pi_0}{1+\pi_a} \right]$$

subject to the manager’s ($h = 1$) reservation utility constraint

$$- \frac{(1 + \pi_0)}{A} e^{-A \left[c^1_0(w,\beta_f^1,\beta_f^2,p') - C(\beta_f^1 - \bar{\beta}_f^1)^2 \right]} = W,$$

and subject to:

\begin{align*}
p' &= \pi_0 E(y_1') + \pi_1 \beta_f^1 + \pi_2 \beta_f^2, \\
\beta_f^j &= \beta_f^j(w), \quad j = 1, 2,
\end{align*}

given π_j, $j = 0, 1, 2$.

Thus, as with owner-managed firms, corporations can use w to pre-commit to the ex-post choice of technology characterized by $\beta_f^j(w)$. Entrepreneurs in owner-managed firms and stockholders in corporations both rationally anticipate the effect of technology choice on the value of the firm. As a result, all else equal, the proportion of the firm awarded to managers and the cash flow betas in equilibrium are the same as those under the equilibrium for owner-managed firms. The two settings are in fact isomorphic.

Proposition 5 In the case of corporations, stockholders choose to retain for themselves the same fraction of the firm that an entrepreneur sells to the stock market in an owner-managed firm with moral hazard: w^{**}. As a consequence, at equilibrium managers hold a fraction $(1 - w^{**})$ of the firm and choose the same loading on the aggregate risk factor as entrepreneurs would in an owner-managed firm with moral hazard: β_1^{**}.

It follows from Propositions 4 and 5 that, in the case of corporations too, the equilibrium fraction of the firm held by investors and the induced cash flow betas are constrained efficient.

7 Extensions

We have analyzed thus far a simple economy with two risk factors. We extend this analysis to consider different risk factors underlying the risk composition of firm’s cash flows and agents’ endowments. For this analysis, we more fully exploit the generality of the CAPM economy, formally stated in Appendix D (available upon request).25 We continue to interpret the firm as a representative sector, and thus often refer to firms as sectors.

25For sake of expositional simplicity, we do not state our results in this section as formal propositions. Formal statements and proofs are available from the authors upon request.
7.1 Multi-Sector Economy

Consider an economy and a stock market with two sectors, f and g. The economy’s factor structure is composed of a common risk factor, x_1, and two additional risk factors, x_2 and x_3, which are orthogonal to the common factor. In this multi-sector economy, the common factor can be interpreted as a “stock market index,” and the additional risk factors can be interpreted as the “sector-specific” risks. The cash flows of the two sectors in terms of this basic factor structure of the economy are as follows:

\[
y_f^l - E(y_f^l) \equiv \beta_f^1 x_1 + \beta_f^2 x_2, \tag{48}
\]

\[
y_g^l - E(y_g^l) \equiv \beta_g^1 x_1 + \beta_g^3 x_3. \tag{49}
\]

Entrepreneurs cannot trade the shares of their own firms, but can trade otherwise in the stock market: entrepreneurs in sector f (respectively in sector g) can trade factors x_1 and x_3 (respectively x_1 and x_2).

At equilibrium, entrepreneurs load their firms’ cash flows on x_1, the component of cash flows that is common with the stock market index and is correlated with the aggregate endowment risk. Consequently, the cash flows of firms traded in the stock market, and by implication the stock returns of these firms, are excessively correlated across sectors, in addition to being correlated with the index returns and the aggregate portfolio.

More formally, entrepreneurs in sector f would want to trade the stock of sector g only as a way to hedge a part of endowment risk. Entrepreneurs in sector f do not have incentives to trade factor x_3, which is uncorrelated with their wealth. They trade in the stock market index x_1 only.\(^{26}\) The argument is symmetric for entrepreneurs in sector g. Again, in general, the excessive correlation of stock market returns across sectors is enhanced for firms and economies that employ high-powered incentive compensation schemes to address alternative agency problems.

7.2 Purely Idiosyncratic Risk in the Stock Market

Consider a firm in our single-sector economy as in fact a continuum of identical firms of measure 1, indexed by $s \in (0, 1)$, and facing independent and identically distributed (i.i.d.)

\(^{26}\)In fact the equilibrium entrepreneurial ownership $(1 - w^{**})$ and the equilibrium loading β_1^{**} are chosen exactly as in Section 3 if the cost function for technology changes is commensurate.
We perturb our basic decomposition of stock market returns as follows:

\[y^f_s - E(y^f_1) \equiv \beta_1^f x_1 + \beta_2^f (x_2 + x_s^s), \ s \in (0, 1). \]

(50)

Factor \(x_s^s \) represents firm \(s \)'s purely idiosyncratic component: It is i.i.d. over \(s \), uncorrelated with \(x_1 \) and \(x_2 \), and it satisfies \(E(x_s^s) = 0 \) and \(\text{var}(x_s^s) = \sigma \). An entrepreneur cannot trade the shares of his own firm and of other firms in his sector, but can trade in the stock market otherwise. Specifically, entrepreneurs can trade factors \(x_1 \), but cannot trade \((x_2 + x_s^s) \): The entrepreneur in firm \(s \) must hold the sector-specific component of his firm, \(x_2 \), as well as the purely idiosyncratic risk component, \(x_s^s \).

Entrepreneurs have incentives to over-load their firms’ risk onto the hedgeable component \(x_1 \) and away from the unhedgeable component \((x_2 + x_s^s) \). The resources entrepreneurs employ to reduce the loading of the firm on \(x_s^s \) are wasted from the point of view of the economy: Each unhedgeable unit of the firm carries a variance of \((1 + \sigma)\) when held by the entrepreneur; the same unit, when sold to investors, carries an effective variance of 1, as investors can diversify away \(x_s^s \) across the continuum of firms. Thus, in equilibrium the fraction of their firms that entrepreneurs hold decreases in \(\sigma \), and the induced loading of each firm on the common stock market component \(x_1 \) increases in \(\sigma \). In particular, for any \(\sigma > 0 \), this loading is greater than \(\beta_1^{**} \), the equilibrium loading for \(\sigma = 0 \).

8 The Effect of Financial Innovations

We have treated financial markets as exogenous in our analysis. However, incentives to increase aggregate risk loading of firms depend on the financial markets in the economy; entrepreneurs and managers will load their firms’ returns on those aggregate risk factors that they are not restricted from trading in order to hedge their risk exposure. We analyze the effect of introducing financial innovations that allow greater hedging of such risk exposure.

The impact depends on the specific form of the innovations. More precisely, innovations that allow the entrepreneurs and managers to hedge their sector-specific risk have a negative effect on incentives and thus possibly on welfare.\(^{28}\) In contrast, innovations that enable the

\(^{27}\) Working with a continuum of firms that face i.i.d. shocks requires abusing the Law of Large Numbers. Working instead with a countable infinity of firms would avoid this abuse with no change to our analysis, but at a notational cost. See, for example, Al-Najjar (1995).

\(^{28}\) Even though such financial innovations generally have negative welfare effects for the economy as a whole, financial markets tend to introduce such financial instruments: entrepreneurs and managers will in fact demand them. As previously discussed, to manage labor income risk for CEOs and senior executives, investment banks have created a sizable market to manufacture derivative products. Bettis, Bizjak, and
entrepreneurs and managers to diversify only the firm-specific or purely idiosyncratic risks tend to have a positive effect on their incentives and overall welfare.

These points can be easily illustrated. Consider the entrepreneurs of firm \(f \) in Section 7.1. What is the effect of a financial innovation that allows these entrepreneurs to hedge \(x_2 \), the risk of their sector? This financial innovation allows entrepreneurs to undo the incentives provided by the ownership of their firm to reduce the aggregate risk of the firm’s cash flows: Their exposure to any sector-specific risk can be re-balanced after the firm is sold on the market. Consequently, in equilibrium the fraction of their firms that entrepreneurs hold coincides with the market share of the firm, \((1 - w^*)\); the loading on the common stock market component \(x_1 \) is not reduced at all and coincides with the initial loading \(\bar{\beta}_f \). This result represents a complete lack of entrepreneurial activity.

In contrast, consider an innovation that allows entrepreneurs to hedge the idiosyncratic component of the firm’s return, \(x^*_2 \), but not the sector-specific component, \(x_2 \) (based on the factor structure of Section 7.2). In this case, entrepreneurs hedge \(x^*_2 \), as do all other agents. As a consequence, \(x^*_2 \) has no effect on the economy whatsoever, and, in particular, entrepreneurs do not shy away from undertaking this risk. Thus, in equilibrium, entrepreneurs hold a fraction \((1 - w^{**})\) of the firm; and the effect of the innovation is to reduce the loading on the common stock market component to \(\beta_1^{**} \). It follows that this innovation in fact has a positive welfare effect on the economy: It enables greater risk-sharing amongst agents and reduces wasteful diversification activity.

This analysis of financial innovations that allow entrepreneurs to better hedge their firm’s idiosyncratic risk could help explain the finding of Campbell, Lettau, Malkiel, and Xu (2001) that, over the period 1962–1987, the U.S. stock market as a whole did not become more volatile, even though individual firm volatility increased substantially. The increase in individual firm volatility could result, at least in part, from such financial innovations having led managers and entrepreneurs to reduce wasteful activity aimed at reducing firm-specific risk. Campbell, Lettau, Malkiel, and Xu (2001) also document a decline in the correlation between individual stock returns. This is consistent with the reduced incentives of managers to substitute firm-specific risks with hedgeable economy-wide risks. Bettis, Bizjak, and Lemmon (1999) document that the purchases of zero-cost collars and equity swaps by corporate insiders are followed by an increase in the volatility of their stocks’ returns. While Bettis, Bizjak, and Lemmon do not isolate the systematic and the idiosyncratic components of volatility, their evidence is potentially consistent with our argument.

\begin{itemize}
\item Lemmon (1999) provide direct evidence for managerial demand for such financial innovations. Ofek and Yermack (2000) also document the managerial propensity to actively re-balance their portfolios within the restrictions on the sale of their shareholdings.
\end{itemize}
9 Conclusions

In this paper, we examine implications for capital budgeting arising from a manager’s ability to hedge the aggregate risk of his exposure to firm cash flows. In particular, we focus on the incentives of managers to substitute the firm-specific risk of cash flows for aggregate risk, for example, by passing up entrepreneurial activity in favor of more prosaic projects. We show that such risk-substitution moral hazard increases aggregate risk in stock markets and reduces the ability of investors to share risks. We characterize the optimal ownership structure designed to counteract this moral hazard and study its welfare properties.

Our objective has been to identify managerial incentives as an endogenous determinant of the extent of aggregate or economy-wide risk. Our integrated model could be of more general use in financial economics. Potential applications include analysis of cross-sectional and time-series variation in firm-level and market-level volatility, and an in-depth study of changes in the risk composition of firms following corporate mergers and acquisitions.

References

Captions for Figures

Figure 1: This figure illustrates our conceptual explanation for the empirically documented hump-shaped relationship between firm performance (measured as firm value in the paper) and ownership. The explanation relies on a negative correlation between the severity of risk-substitution moral hazard (β_1^f) and free cash-flow moral hazard (η), as illustrated in the figure for low and high levels of ownership.

Figure 2: This figure plots $(1 - w^{**})$, the equilibrium ownership in the moral-hazard economy of Section 3, as a function of $\bar{\beta}_1^f$, the initial or intrinsic aggregate risk loading of the firm. The benchmark ownership in the case of no moral hazard, $(1 - w^*)$ is also plotted. The numerical values are based on an example economy with the following parameter values: $A = 0.25$, $H = 3$, $J = 2$, $y_0 - E(y_1) = -5.0$, $\beta_1^2 = 5.0$, $\beta_2^2 = 5.0$, $\beta_1^3 = -2.5$, $\beta_2^3 = -5.0$, $\bar{\nu} = 64.0$, and $C = 0.06$. Note that $\sum_{h=2}^H \beta_1^h = 2.5 > 0$ and $\sum_{h=2}^H \beta_1^h = 0$, consistent with the assumptions. The initial beta of the firm on aggregate risk, $\bar{\beta}_1^f$, is varied from 0.32 to 5.44. The competitive equilibrium is computed by a numerical fixed-point algorithm using the analytical expressions in Appendix A.

Figure 3: This figure plots $\beta_1^f (w^{**})$, the equilibrium beta of the firm on aggregate risk in the moral-hazard economy of Section 3, as a function of $(1 - w^{**})$, the equilibrium ownership when $\bar{\beta}_1^f$, the initial or intrinsic aggregate risk loading of the firm, is varied. The numerical values are based on an example economy with the following parameter values: $A = 0.25$, $H = 3$, $J = 2$, $y_0 - E(y_1) = -5.0$, $\beta_1^2 = 5.0$, $\beta_2^2 = 5.0$, $\beta_1^3 = -2.5$, $\beta_2^3 = -5.0$, $\bar{\nu} = 64.0$, and $C = 0.06$. Note that $\sum_{h=2}^H \beta_1^h = 2.5 > 0$ and $\sum_{h=2}^H \beta_1^h = 0$, consistent with the assumptions. The initial beta of the firm on aggregate risk $\bar{\beta}_1^f$ is varied from 0.32 to 5.44.

Figure 4: This figure plots the equilibrium market value of the firm, $(1 - w^{**})p^f (w^{**})$, as a function of $(1 - w^{**})$, the equilibrium ownership in the moral-hazard economy of Section 3, when $\bar{\beta}_1^f$, the initial or intrinsic aggregate risk loading of the firm, is varied. The numerical values are based on an example economy with the following parameter values: $A = 0.25$, $H = 3$, $J = 2$, $E(y_1) = 10$, $y_0 - E(y_1) = -5.0$, $\beta_1^2 = 5.0$, $\beta_2^2 = 5.0$, $\beta_1^3 = -2.5$, $\beta_2^3 = -5.0$, $\bar{\nu} = 64.0$, and $C = 0.06$. Note that $\sum_{h=2}^H \beta_1^h = 2.5 > 0$ and $\sum_{h=2}^H \beta_1^h = 0$, consistent with the assumptions. The initial beta of the firm on aggregate risk $\bar{\beta}_1^f$ is varied from 0.32 to 5.44.
Appendices

A Capital Asset Pricing Model (CAPM) Economy and Its Competitive Equilibrium

Consider the economy described in Section 2 and its competitive equilibrium defined in Section 2.1. It is convenient and formally equivalent to represent the competitive equilibrium in terms of the markets and the prices of the two risk factors, 1 and 2: using the aggregate risk asset 1 and the firm f, agents 1 > 1 can replicate the payoff of the sector-specific risk factor 2; and a portfolio \((\theta_0, \theta_1, \theta_f)\) of any agent’s positions in the bond, asset 1, and the firm f, maps one-to-one onto a portfolio \((\theta_0 + \theta_fe(y'_f), \theta_1 + \beta'_f \theta_f, \beta''_f \theta_f)\) of the agent’s positions in the bond, asset 1, and asset 2. For the entrepreneur \((h = 1)\), a participation restriction against trading the firm translates into a participation restriction against trading the sector-specific risk factor 2. If \(H_j\) denotes the set of agents trading asset j and \(|H_j|\) is the size of this set, then \(H_1 = \{1, \ldots, H\}, |H_1| = H, H_2 = \{2, \ldots, H\}, \) and \(|H_2| = H - 1\). Let \(J^h\) be the set of risky assets that the agent can trade: \(J^1 = \{1\}, \) and \(J^h = \{1, 2\}\) for \(h > 1\). Finally, the positive net supply of the firm translates into a positive net supply of both the factors and the risk-free asset: \(s_0 = wE(y'_f)\), and \(s_j = w\beta'_j\) for \(j = 1, 2\).

The competitive equilibrium defined in equations (4)–(11) translates into a competitive equilibrium of the economy with orthogonal risk factors as follows: The problem of each agent \(h\) is to choose a consumption allocation at time 0, \(c^h_0\); portfolio positions in the risk-free bond and in all tradable assets, \([\theta^h_0, \theta^h_j]_{j \in J^h}\); and a consumption allocation at time 1, a random variable \(c^h_1\), so as to maximize the expected utility

\[
E \left[u^h(c^h_0, c^h_1) \right] = -\frac{1}{A}e^{-Ac^h_0} + E \left[-\frac{1}{A}e^{-Ac^h_1} \right]
\]

(A.1)

subject to the budget constraints and the restricted participation constraints:

\[
c^h_0 = y'_0 - \pi_0 \theta^h_0 - \sum_{j=1}^2 \pi_j \theta^h_j, \quad h > 1,
\]

(A.2)

\[
c^1_0 = y'_1 + wp' - \pi_0 \theta^1_0 - \pi_1 \theta^1_1,
\]

(A.3)

\[
c^h_1 = y'_h + \theta^h_0 + \sum_{j=1}^2 \theta^h_j x_j, \quad h > 1,
\]

(A.4)

\[
c^1_1 = \theta^1_0 + \theta^1_1 x_1 + (1 - w)y'_1.
\]

(A.5)
Definition A.1 A competitive equilibrium is a consumption allocation \((c_h^0, c_h^1)\), for all agents \(h = 1, \ldots, H\), that solves the problem of maximizing (A.1) subject to (A.2–A.5) at prices \([\pi_0, \pi_1, \pi_2]\), and such that consumption and financial markets clear

\[
\sum_h (c_h^0 - y_h^0) \leq 0, \quad (A.6)
\]

\[
\sum_h (c_h^1 - y_h^1) \leq 0 \text{ (with probability 1 over all possible states at } t = 1), \quad (A.7)
\]

\[
\sum_h \theta_h^j = s_j, \quad j = 0, 1, 2, \text{ whereas } s_j \text{ is the net supply of factor } j. \quad (A.8)
\]

Proposition A.2 The competitive equilibrium of the two-period CAPM economy defined by equations (A.1)–(A.8) is characterized by prices of assets \((\pi_j)\), portfolio choices \((\theta_h^j)\), and consumption allocations \((c_h^t)\), given below.

\[
\pi_0 = \exp \left\{ A (y_0 - Ey_1) + \frac{\sigma^2}{2H} \sum_{h=1}^H \left[(1 - R_h^2) \text{var}(y_h^1) + \sum_{j \in J_h} \left(\beta_j + \frac{1}{|H_j|} s_j \right)^2 \right] \right\}, \quad (A.9)
\]

where

\[
y_0 = \frac{1}{H} \sum_{h=1}^H y_h^0, \quad y_1 = \frac{1}{H} \sum_{h=1}^H y_h^1, \quad (A.10)
\]

\[
\beta_1 = \frac{1}{|H_1|} \text{cov} \left((1 - w)y_1 + \sum_{h=2}^H y_h^1, x_1 \right), \quad \beta_2 = \frac{1}{|H_2|} \text{cov} \left(\sum_{h=2}^H y_h^1, x_2 \right), \quad (A.11)
\]

\[
s_0 = wE(y_1^f), \quad s_j = w\beta_j^f, \quad j = 1, 2, \quad (A.12)
\]

\[
\frac{\pi_j}{\pi_0} = E(x_j) - A \left(\beta_j + \frac{1}{|H_j|} s_j \right), \quad j = 1, 2, \quad (A.13)
\]

and for \(h > 1\) (non-entrepreneurs),

\[
R_h^2 = \frac{\sum_{j=1}^2 \left(\beta_j^h \right)^2}{\text{var}(y_1^f)} \quad , \quad (A.14)
\]
\[\theta_j^h = \left(\beta_j + \frac{1}{|H_j|} s_j \right) - \beta_j^h, \ j = 1, 2, \quad (A.15) \]

\[\theta_0^h = \frac{1}{1 + \pi_0} \left(y_0^h - E(y_1^h) - \sum_{j=1}^2 \pi_j \theta_j^h + \frac{A}{2} \text{var}(c_1^h) - \frac{1}{A} \ln(\pi_0) \right), \quad (A.16) \]

\[c_1^h = \theta_0^h + \sum_{j=1}^2 \left(\beta_j + \frac{1}{|H_j|} s_j \right) x_j + \left(y_1^h - \sum_{j=1}^2 \beta_j^h x_j \right), \quad (A.17) \]

\[\text{var}(c_1^h) = \text{var}(y_1^h) - \sum_{j=1}^2 (\beta_j^2) + \sum_{j=1}^2 \left(\beta_j + \frac{1}{|H_j|} s_j \right)^2, \quad (A.18) \]

\[c_0^h = -\frac{1}{A} \ln \frac{1}{\pi_0} + E(y_1^h) + \theta_0^h - \frac{A}{2} \text{var}(c_1^h), \quad (A.19) \]

and finally, for \(h = f = 1 \) (entrepreneur),

\[R_h^f \equiv \frac{(1 - w)^2 (\beta_1^2)}{\text{var}(y_1^h)}, \quad (A.20) \]

\[\theta_1^f = \left(\beta_1 + \frac{1}{|H_1|} s_1 \right) - (1 - w) \beta_1^f, \quad \text{and} \ \theta_2^f = 0, \quad (A.21) \]

\[\theta_0^h = \frac{1}{1 + \pi_0} \left(y_0^h + wp^f - (1 - w)E(y_1^f) - \pi_1 \theta_1^h + \frac{A}{2} \text{var}(c_1^h) - \frac{1}{A} \ln(\pi_0) \right), \quad (A.22) \]

\[c_1^h = \theta_0^h + \left(\beta_1 + \frac{1}{|H_1|} s_1 \right) x_1 + (1 - w) \left(y_1^f - \beta_1^f x_1 \right), \quad (A.23) \]

\[\text{var}(c_1^h) = (1 - w)^2 \text{var}(y_1^f) - (1 - w)^2 (\beta_1^2) + \left(\beta_1 + \frac{1}{|H_1|} s_1 \right)^2, \quad (A.24) \]

\[c_0^h = -\frac{1}{A} \ln \frac{1}{\pi_0} + (1 - w)E(y_1^f) + \theta_0^h - \frac{A}{2} \text{var}(c_1^h). \quad (A.25) \]

This equilibrium with positive supply of assets is similar to that without positive supply (see, Willen, 1997, and Acharya and Bisin, 2000), except that (i) the entrepreneur holds only a fraction \((1 - w) \) of his firm, (ii) at time 0 the entrepreneur collects proceeds of \(wp^f \) from selling fraction \(w \) of his firm, and (iii) aggregate beta \(\beta_j \) in the zero-supply-of-assets case is replaced by \((\beta_j + \frac{1}{|H_j|} s_j) \) to reflect the positive supply of assets. A derivation of these competitive equilibrium properties is a special case of the derivation for the general CAPM economy outlined in Appendix D, available from the authors upon request.
B Welfare Properties

We characterize the welfare measure used in the paper (individual h’s compensating transfer, μ^h, and the aggregate compensating transfer, μ) in terms of the equilibrium price of the bond, π_0, and the exogenously given price of the bond at autarky, π^a_0.

Proposition B.1 The individual welfare of agent h is measured by

$$\mu^1 = c^1_0 - c^{a1}_0 - \frac{1}{A} \ln \frac{1 + \pi_0}{1 + \pi^a_0} - C(\beta^f_1 - \bar{\beta}^f_1)^2, \text{ and}$$

$$\mu^h = c^h_0 - c^{ah}_0 - \frac{1}{A} \ln \frac{1 + \pi_0}{1 + \pi^a_0}, \text{ for } h = 2, \ldots, H.$$

The aggregate welfare of the economy is measured by

$$\mu = -H \frac{1 + \pi_0}{1 + \pi^a_0} - C(\beta^f_1 - \bar{\beta}^f_1)^2.$$

Proof: Consider the definitions of individual welfare in equations (35) and (36). Since

$$U^1(c^1_0 - C(\beta^f_1 - \bar{\beta}^f_1)^2, c^1_1) \equiv -\frac{(1 + \pi_0)}{A} e^{-A(c^1_0 - C(\beta^f_1 - \bar{\beta}^f_1)^2)},$$

$$U^h(c^h_0, c^h_1) \equiv \frac{(1 + \pi_0)}{A} e^{-Ac^h_0}, \text{ for } h = 2, \ldots, H, \text{ and},$$

$$U^{ah}(c^{ah}_0 + \mu^1, c^{ah}_1) \equiv -\frac{(1 + \pi^a_0)}{A} e^{-Ac^{ah}_0}, \text{ } \forall h,$$

we obtain that μ^1, the individual welfare of entrepreneur, satisfies

$$\frac{(1 + \pi_0)}{A} e^{-A(c^1_0 - C(\beta^f_1 - \bar{\beta}^f_1)^2)} = \frac{(1 + \pi^a_0)}{A} e^{-A(c^{ah}_0 + \mu^1)}.$$

Simplifying this, we obtain the expression for μ^1 in equation (B.1). The result for μ^h, $h = 2, \ldots, H$, follows similarly. Finally, since $\mu = \sum_{h=1}^H \mu^h$, and $\sum_{h=1}^H c^h_0 = \sum_{h=1}^H c^{ah}_0 = \sum_{h=1}^H y^h_0$ by the market-clearing conditions under both economies, we obtain the expression for μ in equation (B.3).

C Proofs of Propositions

Proof of Proposition 1. Under the benchmark case in equation (21), the entrepreneur simultaneously chooses the ownership structure, w, and the cash flow betas, β^f_1 and β^f_2. We
first consider the choice of β_1^f for a given w, and next the choice of optimal w, taking into account the choice of β_1^f; β_2^f is determined by the constraint (23).

The entrepreneur is a price-taker and trades only in asset 0 and asset 1, but rationally anticipates the effect of cash flow betas on the price of the firm p^f (equation 22). Using the competitive equilibrium outcomes (A.21)–(A.25) from Appendix A, we obtain

\[
\frac{\partial}{\partial \beta_1^f} \left[c_0^f(w, \beta_1^f, \beta_2^f, p^f = \pi_0 E(y_1^f) + \pi_1 \beta_1^f + \pi_2 \beta_2^f) - C(\beta_1^f - \bar{\beta}_1^f)^2 \right] = 0
\]

(C.1)

\[
= \frac{\partial}{\partial \beta_1^f} \left[\theta_0^f - \frac{A}{2} \text{var}(c_1^f) \right] - 2C(\beta_1^f - \bar{\beta}_1^f)
\]

(C.2)

\[
= \frac{1}{1 + \pi_0} \left(w \pi_1 \beta_1^f + w \pi_2 \beta_2^f + (1 - w) \pi_1 \beta_1^f - \frac{A \pi_0}{2} \text{var}(c_1^f) \right) - 2C(\beta_1^f - \bar{\beta}_1^f)
\]

(C.3)

\[
= \frac{A \pi_0}{1 + \pi_0} \left((1 - w)^2 + \frac{w^2}{H - 1} \right) \beta_1^f - \frac{1}{H} \sum_{h=2}^{H} \beta_h^f \right) - 2C(\beta_1^f - \bar{\beta}_1^f)
\]

(C.4)

where, to obtain equation (C.3), we substitute constraints (22) and (23) and the restricted participation constraints $\theta_2^f \equiv 0$, $|H_1| = H$, and $|H_2| = H - 1$. Finally, to obtain equation (C.4) from equation (C.3), we substitute equilibrium prices and aggregate supplies using equations (A.11)–(A.13) and the maintained assumption (equation 17) that $\beta_2 = 0$. The optimal β_1^f for a given w sets the partial derivative in equation (C.4) to zero.

Consider next the choice of w given the choice of β_1^f.

\[
\frac{d[c_0^f - C(\beta_1^f - \bar{\beta}_1^f)^2]}{dw} = \frac{\partial[c_0^f - C(\beta_1^f - \bar{\beta}_1^f)^2]}{\partial \beta_1^f} \frac{d\beta_1^f}{dw} + \frac{\partial[c_0^f - C(\beta_1^f - \bar{\beta}_1^f)^2]}{\partial w}
\]

(C.5)

\[
= \frac{\partial[c_0^f - C(\beta_1^f - \bar{\beta}_1^f)^2]}{\partial w} \text{ by the envelope theorem.}
\]

(C.6)

Since the entrepreneur is a price-taker, using equations (A.21)–(A.25) we obtain

\[
\frac{\partial[c_0^f - C(\beta_1^f - \bar{\beta}_1^f)^2]}{\partial w} = \frac{\partial c_0^f}{\partial w} - \frac{\partial}{\partial w} \left[(1 - w) E(y_1^f) + \theta_0^f - \frac{A}{2} \text{var}(c_1^f) \right], \text{ where}
\]

(C.7)

\[
\theta_0^f - \frac{A}{2} \text{var}(c_1^f) = \frac{1}{1 + \pi_0} \left[y_1^f - (1 - w) E(y_1^f) + \pi_0 w E(y_1^f) + \sum_{j=1}^{2} \pi_j w \beta_j^f - \pi_1 \theta_1^f \right]
\]

(C.8)
Simplifying using constraints (22) and (23), the maintained assumptions, and the expressions for equilibrium prices and aggregate supplies in equations (A.11)–(A.13), we obtain

\[
\frac{\partial[c_0^1 - C(\beta_1^f - \beta_1^s)^2]}{\partial w} = -E(y_f^1) + \frac{1}{1 + \pi_0} \left[(1 + \pi_0)E(y_f^1) + \pi_2\beta_2^f + A\pi_0(1 - w)(\beta_2^f)^2 \right]
\]

\[
= \frac{1}{1 + \pi_0} \left[\pi_2\beta_2^f + A\pi_0(1 - w)(\beta_2^f)^2 \right]
\]

\[
= \frac{A\pi_0}{1 + \pi_0} \beta_2^f \left(1 - w - \frac{w}{H - 1} \right).
\]

(C.9)

This first-order derivative is set to zero at \(w = w^* = (1 - \frac{1}{\pi}) \). Furthermore,

\[
\frac{d^2[c_0^1 - C(\beta_1^f - \beta_1^s)^2]}{dw^2} = \frac{d}{dw} \left(\frac{\partial[c_0^1 - C(\beta_1^f - \beta_1^s)^2]}{\partial w} \right)
= \frac{\partial^2[c_0^1 - C(\beta_1^f - \beta_1^s)^2]}{\partial w^2}
\]

\[
= -\frac{HA\pi_0}{(H - 1)(1 + \pi_0)}(\beta_2^f)^2 < 0, \text{ since}
\]

(C.12)

\[
\frac{\partial^2[c_0^1 - C(\beta_1^f - \beta_1^s)^2]}{\partial \beta_1^f \partial w}
= \frac{\partial}{\partial \beta_1^f} \left[\frac{A\pi_0}{1 + \pi_0} (\beta_2^f)^2 \left(1 - w - \frac{w}{H - 1} \right) \right]
\]

\[
= -\frac{2A\pi_0}{1 + \pi_0} \beta_1^f \left(1 - w - \frac{w}{H - 1} \right) = 0 \text{ at } w = w^*.
\]

(C.13)

(C.14)

The equity ownership retained by the entrepreneur is thus given by \((1 - w^*) = \frac{1}{\pi}\). Substituting \(w = w^* \) in equation (C.4) and setting it to zero, we find that the aggregate-risk beta chosen by the entrepreneur is \(\beta_1^* = \beta_1^f - \frac{\Delta m}{2CH(1 + \pi_0)} \sum_{h=2}^H \beta_h^k < \beta_1^f \). Note that at \(w = w^* \),

\[
\frac{\partial^2}{\partial \beta_1^f^2} [c_0^1 - C(\beta_1^f - \beta_1^s)^2] = -\frac{2AC\pi_0}{1 + \pi_0} < 0, \text{ satisfying the optimality of } \beta_1^*.
\]

\[\diamondsuit\]

Proof of Propositions 2.

Sequence of Steps: First, we characterize the technology choice \(\beta_1^{**} \) and the ownership structure choice \(w^{**} \) for the case of owner-managed firm with moral hazard (Proposition 2). Next, we prove that the equilibrium aggregate risk loading in the moral-hazard case exceeds the benchmark aggregate risk loading, i.e., \(\beta_1^* < \beta_1^{**} \).

Step 1: First consider the entrepreneur’s technology choice for owner-managed firms with moral hazard as specified in equation (24). The analysis differs from the proof of Proposition 1 (the case of no moral hazard) as follows: From the entrepreneur’s standpoint, the firm’s proceeds cannot be affected by a choice of betas, because the betas are not observed by investors. Formally, this implies that the constraint \(p^f = \pi_0E(y_f^1) + \pi_1\beta_1^f + \pi_2\beta_2^f \) (equation 22) does not affect the capital budgeting problem in the case of moral hazard. Define \(c_0^1 \equiv c_0^1(w, \beta_1^f, \beta_2^f, p^f) \), where \(p^f \) is treated as a lump sum constant in order to distinguish it from \(c_0^1 \equiv c_0^1(w, \beta_1^f, \beta_2^f, p^f = \pi_0E(y_f^1) + \pi_1\beta_1^f + \pi_2\beta_2^f) \).
Using the competitive equilibrium outcomes (A.21)–(A.25), we obtain
\[
\frac{\partial}{\partial \beta_1^I} \left[c_0^I(w, \beta_1^I, \beta_2^I, p^I) - C(\beta_1^I - \bar{\beta}_1^I)^2 \right]
\] (C.15)
\[
= \frac{\partial}{\partial \beta_1^I} \left[\theta_0^I - \frac{A}{2} \text{var}(c_1^I) \right] - 2C(\beta_1^I - \bar{\beta}_1^I)
\] (C.16)
\[
= \frac{\partial}{\partial \beta_1^I} \left[\frac{1}{1 + \pi_0} \left((1 - w)\pi_1^I \beta_1^I - \frac{A\pi_0}{2} \text{var}(c_1^I) \right) \right] - 2C(\beta_1^I - \bar{\beta}_1^I)
\] (C.17)
\[
= \frac{\pi_1(1 - w)}{1 + \pi_0} + \frac{A\pi_0}{1 + \pi_0} (1 - w)^2 \beta_1^I - 2C(\beta_1^I - \bar{\beta}_1^I)
\] (C.18)
\[
= \frac{A\pi_0}{1 + \pi_0} (1 - w) \left[(1 - w - \frac{1}{H}) \beta_1^I - \frac{1}{H} \sum_{h=2}^{H} \beta_1^h \right] - 2C(\beta_1^I - \bar{\beta}_1^I),
\] (C.19)

where, to obtain equation (C.18), we substitute only the constraint (25) and the restricted participation constraints \(\theta_2^I \equiv 0, |H_1| = H \), and \(|H_2| = H - 1 \); finally, to obtain equation (C.19) from equation (C.18), we substitute equilibrium prices and aggregate supplies using equations (A.11)–(A.13) and the maintained assumption that \(\beta_2 = 0 \).

Let \(\beta_1^I(w) \) be the choice of \(\beta_1^I \) that sets the partial derivative in equation (C.19) to zero. The solution to the capital budgeting problem in (24) is thus given by

\[
\beta_1^I(w) = K_1(w)\bar{\beta}_1^I - K_2(w) \sum_{h=2}^{H} \beta_1^h, \quad \text{where}
\] (C.20)
\[
K_1(w) = \left[1 - \frac{A\pi_0(1 - w)}{2C(1 + \pi_0)} \left(1 - w - \frac{1}{H} \right) \right]^{-1}, \quad \text{and}
\] (C.21)
\[
K_2(w) = \frac{A\pi_0(1 - w)}{2CH(1 + \pi_0)} K_1(w).
\] (C.22)

Next, consider the choice of \(w \) by the entrepreneur of the owner-managed firm, as specified in equation (26). While choosing \(w \), the rational expectation constraints apply both for the firm value (equation 27) and for the effect of \(w \) on \(\beta_1^I \) (equation 28). Thus, we obtain
\[
\frac{d[c_0^I - C(\beta_1^I - \bar{\beta}_1^I)^2]}{dw} = \frac{\partial}{\partial \beta_1^I} [c_0^I - C(\beta_1^I - \bar{\beta}_1^I)^2] \frac{d\beta_1^I}{dw} + \frac{\partial}{\partial w} [c_0^I - C(\beta_1^I - \bar{\beta}_1^I)^2]
\] (C.23)

where \(c_0^I \equiv c_0^I(w, \beta_1^I, \beta_2^I, p^I) \) as distinct from \(c_0^I \equiv c_0^I(w, \beta_1^I, \beta_2^I, p^I) \).

We examine successively each of the three terms in the above equation.

(I) First, note that
\[
\frac{\partial}{\partial w} [c_0^I - C(\beta_1^I - \bar{\beta}_1^I)^2] = \frac{A\pi_0}{1 + \pi_0} (\beta_2^I)^2 \left(1 - w - \frac{w}{H - 1} \right) = 0 \text{ at } w = w^*,
\] (C.24)
as in the case of no moral hazard (see equation C.10 in the proof of Proposition 1, above).

(II) Second, we examine \(\frac{\partial c_0^l - C(\beta_l^f - \beta_l^f)^2}{\partial \beta_l^f} \). Note that, unlike the case of no moral hazard, \(\frac{\partial c_0^l - C(\beta_l^f - \beta_l^f)^2}{\partial \beta_l^f} \neq 0 \) (in general), since \(\beta_l^f(w) \) is chosen treating \(p^f \) as a lump sum constant. That is, \(\beta_l^f(w) \) is chosen such that \(\frac{\partial [c_0^l - C(\beta_l^f - \beta_l^f)^2]}{\partial \beta_l^f} = 0 \), which is not generally the same as \(\frac{\partial [c_0^l - C(\beta_l^f - \beta_l^f)^2]}{\partial \beta_l^f} = 0 \). Thus, when \(\beta_l^f = \beta_l^f(w) \),

\[
\frac{\partial [c_0^l - C(\beta_l^f - \beta_l^f)^2]}{\partial \beta_l^f} = \frac{\partial [c_0^l - C(\beta_l^f - \beta_l^f)^2]}{\partial \beta_l^f} - \frac{\partial (c_0^l - c_0^l)}{\partial \beta_l^f} = - \frac{\partial (c_0^l - c_0^l)}{\partial \beta_l^f}, \tag{C.25}
\]

where \(\frac{\partial (c_0^l - c_0^l)}{\partial \beta_l^f} = \frac{\partial}{\partial \beta_l^f} \left[\frac{1}{1 + \pi_0} \left(wp^f - \pi_0 wE(y_1) - \pi_1 w \beta_1^f - \pi_2 w \beta_2^f \right) \right] \tag{C.26} \]

\[
= \frac{1}{1 + \pi_0} \left[-\pi_1 w - \pi_2 w \left(-\frac{\beta_1^f}{\beta_2^f} \right) \right] \tag{C.27} \]

\[
= \frac{A \pi_0}{1 + \pi_0} \left[\frac{1}{H} \left(\sum_{h=1}^{H} \beta_1^h + \beta_1^f \right) - \frac{w}{H - 1} \beta_1^f \right] \tag{C.28} \]

\[
= \frac{A \pi_0}{1 + \pi_0} \left[\frac{1}{H} \left(\sum_{h=2}^{H} \beta_1^h + \left(1 - \frac{w}{w^*} \right) \beta_1^f \right) \right], \tag{C.29} \]

where we have employed the expressions for equilibrium prices and aggregate supplies in equations (A.11)–(A.13). It follows that at \(w = w^* \), \(\frac{\partial [c_0^l - C(\beta_l^f - \beta_l^f)^2]}{\partial \beta_l^f} < 0 \), since \(\sum_{h=2}^{H} \beta_1^h > 0 \).

(III) Finally, we examine \(\frac{\partial \beta_l^f(w)}{\partial w} \). Since \(\frac{\partial [c_0^l - C(\beta_l^f - \beta_l^f)^2]}{\partial \beta_l^f} = 0 \) and \(\frac{\partial^2 [c_0^l - C(\beta_l^f - \beta_l^f)^2]}{\partial \beta_l^f} < 0 \) at \(\beta_l^f = \beta_l^f(w) \) by the optimality of \(\beta_l^f(w) \) under moral hazard, it follows that

\[
\frac{\partial^2 [c_0^l - C(\beta_l^f - \beta_l^f)^2]}{\partial \beta_l^f} \frac{d \beta_l^f(w)}{dw} + \frac{\partial^2 [c_0^l - C(\beta_l^f - \beta_l^f)^2]}{\partial w \partial \beta_l^f} = 0 \tag{C.30} \]

\[
\Rightarrow \quad \text{sign} \left(\frac{d \beta_l^f(w)}{dw} \right) = \text{sign} \left(\frac{\partial^2 [c_0^l - C(\beta_l^f - \beta_l^f)^2]}{\partial w \partial \beta_l^f} \right), \tag{C.31} \]

From equation (C.19), we obtain

\[
\frac{\partial^2 [c_0^l - C(\beta_l^f - \beta_l^f)^2]}{\partial w \partial \beta_l^f} = A \pi_0 \left[-2(1 - w) \beta_1^f + \frac{1}{H} \left(\sum_{h=2}^{H} \beta_1^h + \beta_1^f \right) \right], \tag{C.32} \]

where \(\beta_l^f = \beta_l^f(w) \). It follows that at \(w = w^* \equiv (1 - 1/H) \),

\[
\frac{\partial^2 [c_0^l - C(\beta_l^f - \beta_l^f)^2]}{\partial w \partial \beta_l^f} = A \pi_0 \left[\sum_{h=2}^{H} \beta_1^h - \beta_1^f(w) \right]. \tag{C.33} \]
Thus, \(\frac{d\beta_1'(w)}{dw} < 0 \) at \(w = w^* \) if and only if \(\beta_1'(w^*) > \sum_{h=2}^{H} \beta_h' \). Substituting \(w = (1 - 1/H) \) in equation (C.19) and equating it to zero yields

\[
\beta_1'(w^*) = \bar{\beta}_1 - \frac{A\pi_0}{2CH^2(1 + \pi_0)} \sum_{h=2}^{H} \beta_h' < \bar{\beta}_1' . \tag{C.34}
\]

It follows from (I), (II), and (III) above that at \(w = w^* \), \(\frac{d\beta_1'(w^*)}{dw} > 0 \) if \(\beta_1' > K(\pi_0) \sum_{h=2}^{H} \beta_h' \), where \(K(\pi_0) = A\pi_0 / (2CCH^2(1 + \pi_0)) + 1 \). If the cost parameter \(C \) is sufficiently high, then the function \([\beta_1' - \beta_1''] \) is globally concave. Then, the optimal ownership structure under moral hazard is \(w^* \), where \(w^* > w^* \) if \(\beta_1' > K(\pi_0) \sum_{h=2}^{H} \beta_h' \).

Furthermore, since \(\beta_1'(w^*) < \bar{\beta}_1' \), and in both cases above \(w^* \) is chosen to reduce the aggregate risk loading from its value at \(w^* \), it follows that \(\beta_1''^{*} = \beta_1'(w^*) < \beta_1'(w^*) < \bar{\beta}_1' \). Since \(\pi_0 \in [0,1] \), \(K(\pi_0) \in [1, K] \), where \(K \equiv 1 + A/(4CCH^2) \).

Step 2: Next, we prove that the choice of the risk loading, \(\beta_1''^{*} \), is greater than the benchmark case (first-best), \(\beta_1' \). Since \(w^* \) is constrained efficient (as proved below in the proof of Proposition 4), it follows that at \(w = w^* \),

\[
\frac{d\mu}{dw} = \frac{\partial \mu}{\partial \beta_1'} \frac{d\beta_1'(w)}{dw} + \frac{\partial \mu}{\partial w} = 0 \Rightarrow \frac{\partial \mu}{\partial \beta_1'} = - \left(\frac{\frac{d\mu}{dw}}{\frac{d\beta_1'(w)}{dw}} \right) . \tag{C.36}
\]

Now, consider the case where \(\beta_1'(w^*) > \sum_{h=2}^{H} \beta_h' \). Then, for the moral-hazard economy, \(\frac{d\beta_1'(w)}{dw} < 0 \) at \(w = w^* > w^* \). By the first-best efficiency of \(w^* \), we have \(\frac{\partial \mu}{\partial w} = 0 \) and \(\frac{\partial^2 \mu}{\partial w^2} < 0 \) at \(w = w^* \). This, in turn, implies that \(\frac{\partial \mu}{\partial w} < 0 \) at \(w = w^* \). From equation (C.36), we

29Define function \(g(w, \beta_1'(w)) \equiv c_1(w, \beta_1', \beta_2')F^2 = \pi_0E(Y_1) + \pi_1\beta_1' + \pi_2\beta_2' - C(\beta_1' - \beta_1'')^2 \), where \(\beta_1' = \beta_1'(w) \) and \((\beta_1')^2 + (\beta_2')^2 = \nabla \). Then,

\[
\frac{d^2g}{dw^2} = \frac{d^2g}{d\beta_1'dw} + 2 \frac{\partial^2g}{\partial \beta_1'd\beta_2''} \left(\frac{d\beta_1'(w)}{dw} \right) ^2 + \frac{d^2g}{dw^2} \frac{\partial \mu}{\partial \beta_1'} . \tag{C.35}
\]

Note the following: (i) From equation (C.12), \(\frac{\partial^2 g}{\partial w^2} < 0 \), \(\forall w \); this is the global concavity of the entrepreneur’s objective as a function of \(w \) under the benchmark case. (ii) \(\frac{\partial^2 g}{\partial \beta_1'dw} = \frac{\partial^2 g}{\partial \beta_1'dw} - C < 0 \) for \(C \) sufficiently large. (iii) Using equation (C.20), it can be shown that \(\frac{\partial^2 g}{\partial w^2} \to 0 \) as \(C \to \infty \). (iv) Similarly, it can be shown that \(\frac{\partial^2 g}{\partial \beta_1'dw} \to 0 \) as \(C \to \infty \). (v) From equation (C.13), \(\frac{\partial^2 g}{\partial \beta_1'dw} \) is independent of \(C \). Finally, (vi) from equation (C.4), \(\frac{\partial \mu}{\partial \beta_1'} \) is bounded. It follows that for \(C \) sufficiently large, \(\frac{\partial^2 g}{\partial w^2} < 0 \), \(\forall w \), i.e., if the moral-hazard problem is not “too severe,” then as a function of \(w \) the objective of the entrepreneur under the moral-hazard case is a “perturbation” around the globally concave objective under no moral hazard.
conclude that \(\frac{\partial \mu}{\partial \beta^*_1} < 0 \) at \(w = w^{**} \). That is, the choice of \(\beta^*_1 \) under moral hazard, \(\beta^{**}_1 \), exceeds the first-best (for which \(\frac{\partial \mu}{\partial \beta^*_1} = 0 \)). The proof for the case where \(\beta^*_1(w^*) < \sum_{h=2}^H \beta^*_h \) follows analogously. ◊

Proof of Proposition 3. In the first-best specified in equation (38), the equity ownership structure \(w \) and cash flow beta \(\beta^*_1 \) are chosen by the planner to maximize the compensating aggregate transfer, \(\mu \), given by equation (B.3). Consider first the choice of \(\beta^*_1 \) by the planner for a given \(w \). From equation (A.9) for \(\pi_0 \) at the competitive equilibrium, we obtain

\[
\frac{\partial \mu}{\partial \beta^*_1} = -\frac{H}{A(1 + \pi_0)} \frac{\partial \pi_0}{\partial \beta^*_1} - 2C(\beta^*_1 - \bar{\beta}^*_1), \tag{C.37}
\]

\[
\frac{\partial \pi_0}{\partial \beta^*_1} = \frac{\pi_0 A^2}{2H} \frac{\partial}{\partial \beta^*_1} \left[(1 - w)^2 \text{var}(y^*_1) - (1 - w)^2(\beta^*_1)^2 + \sum_{h=1}^H \sum_{j \in J^h} \left(\beta_j + \frac{1}{|H_j|} s_j \right)^2 \right]
= \frac{\pi_0 A^2}{2H} \frac{\partial}{\partial \beta^*_1} \left[- (1 - w)^2 \beta^*_1 + \frac{1}{H} \left(\sum_{h=1}^H \beta^*_h + \beta^*_1 \right)^2 + \frac{w^2}{H - 1}(\beta^*_2)^2 \right] \tag{C.38}
= \frac{\pi_0 A^2}{H} \left[- (1 - w)^2 \beta^*_1 + \frac{1}{H} \left(\sum_{h=1}^H \beta^*_h + \beta^*_1 \right) - \frac{w^2}{H - 1} \beta^*_1 \right], \tag{C.39}
\]

where we have employed constraint (39), conditions (A.11) and (A.12), and \(\beta_2 = 0 \). Thus,

\[
\frac{\partial \mu}{\partial \beta^*_1} = \frac{A \pi_0}{1 + \pi_0} \left[\left((1 - w)^2 + \frac{w^2}{H - 1} - \frac{1}{H} \beta^*_1 - \frac{1}{H} \sum_{h=2}^H \beta^*_h \right) - 2C(\beta^*_1 - \bar{\beta}^*_1), \right. \tag{C.40}
\]

which is identical to the first-order condition for the choice of \(\beta^*_1 \) by the entrepreneur in the benchmark case (equation C.4). Thus, for a given \(w \), the first-best choice of \(\beta^*_1 \) is the same as that of the entrepreneur in the absence of moral hazard.

Next, consider the planner’s choice of \(w \). By the envelope theorem, we obtain

\[
\frac{d\mu}{dw} = \frac{\partial \mu}{\partial w} = -\frac{H}{A(1 + \pi_0)} \frac{\partial \pi_0}{\partial w}, \tag{C.41}
\]

\[
\frac{\partial \pi_0}{\partial w} = \frac{\pi_0}{2H} \frac{\partial}{\partial w} \left[A^2 \left((1 - w)^2 \text{var}(y^*_1) - (1 - w)^2(\beta^*_1)^2 + \sum_{h=1}^H \sum_{j \in J^h} \left(\beta_j + \frac{1}{|H_j|} s_j \right)^2 \right) \right]
= \frac{\pi_0 A^2}{2H} \frac{\partial}{\partial w} \left[(1 - w)^2(\beta^*_2)^2 + \frac{1}{H} \left(\sum_{h=1}^H \beta^*_h + \beta^*_1 \right)^2 + \frac{w^2}{H - 1}(\beta^*_2)^2 \right] \tag{C.42}
= \frac{\pi_0 A^2}{2H} \left[-2(1 - w)(\beta^*_2)^2 + \frac{2w}{H - 1}(\beta^*_2)^2 \right] \tag{C.43}
= \frac{\pi_0 A^2}{H} (\beta^*_2)^2 \left(1 - w - \frac{w}{H - 1} \right). \tag{C.44}
\]
The above equations can be simplified to yield
\[
\frac{d\mu}{dw} = \frac{A \pi_0}{1 + \pi_0} (\beta_f^1)^2 \left(1 - w - \frac{w}{H - 1} \right),
\] (C.45)

which is identical to the first-order condition for choice of \(w \) by the entrepreneur in the benchmark case (equation C.10). It follows that in the absence of moral hazard, the entrepreneur’s choices of \(w^* \) and \(\beta_1^* \) are first-best efficient.

\[\Box\]

Proof of Proposition 4. The constrained-efficient choice of \(w \) is specified in equation (40). From the proof of the first-best efficiency of the benchmark case (Proposition 3), we know that \(\forall w: \)
\[
\frac{\partial \mu}{\partial \beta_f^1} = \frac{\partial [c_0^1 - C(\beta_f^1 - \bar{\beta}_f^1)^2]}{\partial \beta_f^1}, \text{ and } \frac{\partial \mu}{\partial w} = \frac{\partial [c_0^1 - C(\beta_f^1 - \bar{\beta}_f^1)^2]}{\partial w}. \] (C.46)

It follows that \(\forall w: \)
\[
\frac{d\mu}{dw} = \frac{\partial \mu}{\partial \beta_f^1} \frac{d\beta_f^1(w)}{dw} + \frac{\partial \mu}{\partial w} = \frac{d[c_0^1 - C(\beta_f^1 - \bar{\beta}_f^1)^2]}{dw}, \] (C.47)

where the planner is constrained to choose the same \(\frac{d\beta_f^1(w)}{dw} \) as the entrepreneur. Thus, \(\frac{d\mu}{dw} \) is point-wise identical to \(\frac{d\mu}{dw} \) (given by equation C.23). In turn, the constrained-efficient choice of \(w \), which sets \(\frac{d\mu}{dw} \) to zero, is identical to the choice of \(w \) for the owner–managed firm with moral hazard, which sets \(\frac{d\mu}{dw} \) to zero. The constrained efficiency of \(w^{**} \) in the owner-managed firm with moral hazard follows. \[\Box\]

Proof of Proposition 5. In the case of corporations, the manager is first awarded a fraction \((1 - w)\) of the firm as a stock reward, and then the manager chooses \(\beta_f^1 \) and \(\beta_f^2 \). Investors retain the remaining fraction \(w \). The initial time-1 endowments for all agents are thus identical to their endowments in the case of owner-managed firms for the same fraction \(w \) of the firm sold on the stock market. The only change arises at time 0 due to the time-0 compensation \(W \) awarded to the manager to ensure that in equilibrium he earns the reservation utility of \(\bar{W} \) (see footnote 24). Since these transfers are treated as lump sum constants while undertaking the choice of technology, the managerial choice \(\beta_f^1(w) \) is identical to that of the owner–manager with moral hazard.

The welfare of investors is equivalent to \(\mu - \mu^1 \), where \(\mu \) equals \(\sum_{h=1}^H \mu^h \), the aggregate compensating welfare, and \(\mu^1 \) is the individual compensating welfare of the manager. In equilibrium, \(\mu^1 \) is such that \(U^{a1}(c_0^{a1} + \mu^1, c^{a1}) \equiv \bar{W} \), the manager’s reservation utility (see equation 45 and 36). That is, \(\mu^1 \) is a constant, which implies that the optimal compensation
structure simply maximizes μ. We showed in the proof of constrained-efficiency in Proposition 4 that w^{**} maximizes μ given the choice of technology, $\beta_1^f(w)$. By implication, investors choose compensation structure w^{**} for the manager and induce equilibrium aggregate-risk loading of $\beta_1^{**} = \beta_1^f(w^{**})$, identical to that of the owner–managed firm with moral hazard. Note that W is chosen as a residual from the manager’s reservation constraint (45) given $w = w^{**}$. ♦
Figure 1: Structural Explanation for Hump-shaped relationship between Firm Performance (Value) and Ownership

Risk-substitution problem dominates

Free cash-flow moral problem dominates

High initial beta on aggregate factor, low cash-flow appropriation

Low initial beta on aggregate factor, high cash-flow appropriation
Figure 2: Equilibrium ownership and initial beta of the firm
Figure 3: Equilibrium beta of the firm and endogenous equity ownership
Figure 4: Equilibrium beta of the firm and exogenous equity ownership

Exogenous equity ownership (1-w)

Equilibrium beta

Eqm beta
D Addendum: General Case of CAPM Economy and Its Competitive Equilibrium

The economy is populated by H agents, F firms. Agent h’s preferences are represented by a Constant Absolute Risk Aversion utility function $u^h(\cdot)$ over the consumptions at date 0 and date 1, denoted as c^h_0 and c^h_1, respectively:

\[u^h(c^h_0, c^h_1) \equiv -\frac{1}{A}e^{-Ac^h_0} - \frac{1}{A}e^{-Ac^h_1}. \]

(D.1)

The economy has a N-dimensional orthogonal normal factor structure (x_1, \ldots, x_n), which is a multivariate normal with mean 0, and variance–covariance matrix (normalized to) I, the identity matrix. In particular, each agent h’s endowments in period 1, y^h_1, is generated as a linear combination of N underlying normal risk factors, and hence is in general correlated with other agents’ endowments:

\[y^h_1 - E(y^h_1) \equiv \sum_{n=1}^{N} \beta^h_n x_n, \ h = F + 1, \ldots, H. \]

(D.2)

The first $F < H$ agents are the entrepreneurs. Entrepreneur h owns the firm $f(h)$. Each firm’s cash flow, y^f_1, is also generated by the N factors. Without loss of generality, we assume that the stock market risk is driven by $C < N$ common orthogonal factors, (x_1, \ldots, x_C), and F orthogonal factors, $(x_{C+1}, \ldots, x_{C+F})$, which correspond to the sectoral risk added by each firm’s cash flow:

\[y^f_1 - E(y^f_1) \equiv \sum_{c=1}^{C} \beta^f_c x_c + \beta^f_f x_{C+f}, \ f = 1, \ldots, F. \]

(D.3)

Purely financial assets have payoff z_i, $i = 1, \ldots, I$, which in terms of the factor structure is written as

\[z_i - E(z_i) \equiv \sum_{c=1}^{C} \beta^f_c x_c + \sum_{i=1}^{I} \beta^f_{i} x_{C+F+i}, \ i = 1, \ldots, I, \]

(D.4)

where $(x_{C+F+1}, \ldots, x_{C+F+I})$ contains the additional risks in the return structure of financial markets.

In our economy, all agents can trade the I financial assets and the C orthogonal factors. Moreover, there exists a stock market for trade of the F firms, although the participation
of entrepreneurs (agents \(h \leq F \)) is restricted; in particular, entrepreneur \(f \) cannot trade his own firm \(f, f = 1, \ldots, F \). Using the \(I \) financial assets, the \(C \) markets for factors, and the market for the \(F \) stocks, under the assumptions of payoff orthogonality, agents can replicate the payoffs of first \(C + F + I \) risk factors. (Participation restrictions in the stock market translate into analogous participation restrictions in the market for the \(F \) firms’ risk factors. Similarly, the positive net supply of stocks translates into positive net supply of all factors.) Therefore it is formally equivalent, and it turns out to be convenient to represent the competitive equilibrium of our CAPM economy in terms of not only the market but also the prices of the \(C + F + I \) risk factors. We do this in the following.

We use a single index for all factors: \(j \in \mathcal{J} \equiv \{1, \ldots, J\} \), where \(J \equiv C + F + I \). In general, \(J < N \), and the set of risky assets traded by agent \(h \), denoted as \(J_h \), may be a proper subset of \(\mathcal{J} \), that is, \(J_h \subset \mathcal{J} \) for some \(h \), but we assume that all agents \(h \) are allowed to trade the risk-free bond. \(H_j \) denotes the set of agents trading asset \(j \), \(|H_j| \) being its size.

The problem of each agent \(h \) is to choose a consumption allocation at time 0, \(c_0^h \), portfolio positions in the risk-free bond and in all tradable assets, \([\theta_0^h, \theta_j^h]_{j \in \mathcal{J}} \), and a consumption allocation at time 1, a random variable \(c_1^h \), to maximize the expected utility

\[
E \left[u^h(c_0^h, c_1^h) \right] \equiv -\frac{1}{A} e^{-A c_0^h} + E \left[-\frac{1}{A} e^{-A c_1^h} \right],
\]

subject to the budget constraints and the restricted participation constraints:

\[
c_0^h = y_0^h - \pi_0 \theta_0^h - \sum_{j \in \mathcal{J}} \pi_j \theta_j^h, \quad h > F \quad \tag{D.6}
\]

\[
c_0^h = y_0^h + w^h p^h - \pi_0 \theta_0^h - \sum_{j \in \mathcal{J}} \pi_j \theta_j^h, \quad h \in H, \quad h \leq F \quad \tag{D.7}
\]

\[
c_1^h = y_1^h + \theta_0^h + \sum_{j \in \mathcal{J}} \theta_j^h x_j, \quad h > F \quad \tag{D.8}
\]

\[
c_1^h = (1 - w^h) y_1^h + \theta_0^h + \sum_{j \in \mathcal{J}} \theta_j^h x_j, \quad h \leq F \quad \tag{D.9}
\]

\[
\theta_j^h = 0, \quad j \not\in \mathcal{J}^h. \quad \tag{D.10}
\]

Note that the budget constraint for entrepreneur \(h \) includes the time-0 proceeds from the sale of a fraction \(w^h \) of his firm amounting to \(w^h p^h \). As discussed in the paper, under rational expectations, the price of the firm \(p^h \) is given by \(p^h = \pi_0 E(y_1^h) + \sum_{1 \leq j \leq J} \pi_j \beta_j^h \). Let \(s_j^h \) denote the positive supply of risk factor \(j \) provided by the entrepreneur \(h \) through the sale of fraction \(w^h \) of his firm. Under the factor decomposition (equation D.3) for each firm’s cash flows, these positive supplies are given by \(s_0^h = w^h E(y_1^h) \) and \(s_j^h = w^h \beta_j^h, \quad 1 \leq j \leq J \), so that the proceeds from sale of the firm, \(w^h p^h \), can also be expressed as \(w^h p^h = \sum_{0 \leq j \leq J} \pi_j s_j^h \).
Definition D.1 A competitive equilibrium is a consumption allocation \((c^h_0, c^h_1)\), for all agents \(h \in H\), which solves the problem of maximizing (D.5) subject to (D.6–D.10) at prices \(\pi \equiv [\pi_0, \pi_j]_{j \in J}\), and such that consumption and financial markets clear

\[
\sum_h (c^h_0 - y^0_h) \leq 0, \tag{D.11}
\]

\[
\sum_h (c^h_1 - y^1_h) \leq 0, \text{ with probability } 1 \text{ over } \Omega, \text{ and} \tag{D.12}
\]

\[
\sum_h \theta^h_j = s_j, \ j = 0, 1, \ldots, J, \tag{D.13}
\]

where \(s_j\) is the net supply of factor \(j\), \(s_j \equiv \sum_{1 \leq h \leq F} s^h_j\).

Proposition D.2 The competitive equilibrium of the two-period CAPM economy, defined by equations (D.5)–(D.10), with the market-clearing condition given by equations (D.11)–(D.13), is characterized by prices of assets \((\pi_j)\), portfolio choices \((\theta^h_j)\), and consumption allocations \((c^h_t)\), given below.

\[
\pi_0 = \exp \left\{ A (y_0 - E y_1) + \frac{A^2}{2H} \sum_{h=1}^H \left[(1 - R^2_h) \text{var}(y^1_h) + \sum_{j \in H^h} \left(\beta_j + \frac{1}{|H_j|} s_j \right)^2 \right] \right\}, \tag{D.14}
\]

where

\[
y_0 = \frac{1}{H} \sum_{h=1}^H y^0_h, \quad y_1 = \frac{1}{H} \sum_{h=1}^H y^1_h, \tag{D.15}\]

\[
\beta_j = \text{cov} \left[\frac{1}{|H_j|} \left(\sum_{h \in H_j, h \leq F} (1 - w^h) y^h_1 + \sum_{h \in H_j, h > F} y^h_1 \right), x_j \right], \tag{D.16}\]

\[
s^h_0 = w^h E(y^1_1), \quad s^h_j = w^h \beta^h_j, \ 1 \leq j \leq J, \quad s_j = \sum_{1 \leq h \leq F} s^h_j, \ 0 \leq j \leq J, \tag{D.17}\]

\[
\frac{\pi_j}{\pi_0} = E(x_j) - A \left(\beta_j + \frac{1}{|H_j|} s_j \right), \tag{D.18}\]
and for \(h > F \) (non-entrepreneurs),

\[
R_h^2 = \frac{\sum_{j \in J^h} (\beta^h_j)^2}{\text{var}(y^h_1)}, \tag{D.19}
\]

\[
\theta^h_j = (\beta_j + \frac{1}{|H_j|} s_j) - \beta^h_j, \quad j \in J^h, \quad \text{and} \quad \theta^h_j = 0, \quad j \in (J^h)^c; \tag{D.20}
\]

\[
\theta^h_0 = \frac{1}{1 + \pi_0} \left(y^h_0 - \frac{1}{|H|} \sum_{j \in J^h} \pi_j \theta^h_j + \frac{A}{2} \text{var}(c^h_1) - \frac{1}{A} \ln(\pi_0) \right), \tag{D.21}
\]

\[
ce^h_1 = \theta^h_0 + \sum_{j \in J^h} \left(\beta_j + \frac{1}{|H_j|} s_j \right) x_j + \left(y^h_1 - \sum_{j \in J^h} \beta^h_j x_j \right), \tag{D.22}
\]

\[
\text{var}(c^h_1) = \text{var}(y^h_1) - \sum_{j \in J^h} (\beta^h_j)^2 + \sum_{j \in J^h} \left(\beta_j + \frac{1}{|H_j|} s_j \right)^2, \tag{D.23}
\]

\[
ce^h_0 = -\frac{1}{A} \ln \frac{1}{\pi_0} + \frac{1}{A} \ln \frac{1}{\pi_0} + \frac{1}{A} \ln(\pi_0) \tag{D.24}
\]

and finally, for \(h \leq F \) (entrepreneurs),

\[
R_h^2 = \frac{\sum_{j \in J^h} (1-w^h)^2 (\beta^h_j)^2}{\text{var}(y^h_1)}, \tag{D.25}
\]

\[
\theta^h_j = (\beta_j + \frac{1}{|H_j|} s_j) - (1-w^h)\beta^h_j, \quad j \in J^h, \quad \text{and} \quad \theta^h_j = 0, \quad j \in (J^h)^c; \tag{D.26}
\]

\[
\theta^h_0 = \frac{1}{1 + \pi_0} \left(y^h_0 + w^h p^h - (1-w^h)E(y^h_1) - \sum_{j \in J^h} \pi_j \theta^h_j + \frac{A}{2} \text{var}(c^h_1) - \frac{1}{A} \ln(\pi_0) \right), \tag{D.27}
\]

\[
ce^h_1 = \theta^h_0 + \sum_{j \in J^h} \left(\beta_j + \frac{1}{|H_j|} s_j \right) x_j + (1-w^h) \left(y^h_1 - \sum_{j \in J^h} \beta^h_j x_j \right), \tag{D.28}
\]

\[
\text{var}(c^h_1) = (1-w^h)^2 \text{var}(y^h_1) - \sum_{j \in J^h} (1-w^h)^2 (\beta^h_j)^2 + \sum_{j \in J^h} \left(\beta_j + \frac{1}{|H_j|} s_j \right)^2, \tag{D.29}
\]

\[
ce^h_0 = -\frac{1}{A} \ln \frac{1}{\pi_0} + (1-w^h)E(y^h_1) + \theta^h_0 - \frac{A}{2} \text{var}(c^h_1). \tag{D.30}
\]
This equilibrium, which exhibits a positive supply of assets, is similar to the one without positive supply (see Willen, 1997, and Acharya and Bisin, 2000), but all expressions for the entrepreneurs are modified to reflect the facts that (i) entrepreneur \(h \) holds only a fraction \((1 - w^h)\) of his firm; (ii) at time 0, entrepreneur \(h \) collects proceeds for the remaining fraction \(w^h \) of his firm amounting to \(w^h \beta^h \); and (iii) aggregate beta \(\beta_j \) in the case of zero-supply assets is replaced by \((\beta_j + \frac{1}{p_j s_j})\) to reflect the positive supply of assets.

Proof: Consider the competitive equilibrium of Definition D.1. To determine the equilibrium in closed-form, we derive the first-order conditions for each agent’s maximization of utility function and then apply the market-clearing conditions. Note that fractions of firms to be sold have already been determined and hence positive supplies of all assets are taken as given by all agents. Since competitive entrepreneurs cannot affect the prices of bond and risk factors (or their aggregate supplies), it follows that the proceeds collected from sales of firms are also taken as given by the respective entrepreneurs. Finally, the technology choice of each firm – the firm’s cash flow betas – are also taken as given by all agents: either the betas are observed and contracted upon, as in the case of owner-managed firms with no moral hazard, or these are unobserved but rationally anticipated, as in the case of owner-managed firms with moral hazard and in the case of corporations.

The maximization problem of agent \(h \) in equation (D.5) can be cast in terms of the agent’s choice of portfolios, \([\theta^h_0, \theta^h_j]_{j \in J} \in \mathbb{R}^{J+1}\), as

\[
\max_{[\theta^h_0, \theta^h_j]_{j \in J}} \left\{ -\frac{1}{A} e^{-Ac^h_0} + E \left[-\frac{1}{A} e^{-Ac^h_1} \right] \right\} \tag{D.31}
\]

subject to the constraints (D.6)–(D.10). Since all endowments and risky asset payoffs are normally distributed, this objective simplifies to

\[
\max_{[\theta^h_0, \theta^h_j]_{j \in J}} \left\{ -\frac{1}{A} e^{-Ac^h_0} - \frac{1}{A} e^{-AE(c^h_1)+\frac{4^2}{2} \text{var}(c^h_1)} \right\}. \tag{D.32}
\]

Using equations (D.8)–(D.9) and the normalizations \(E(x_j) = 0, \text{var}(x_j) = 1, \forall j \in J \), we obtain

\[
E(c^h_1) = E(y^h_1) + \theta^h_0, \quad h > F \tag{D.33}
\]

\[
E(c^h_1) = (1 - w^h)E(y^h_1) + \theta^h_0, \quad h \leq F \tag{D.34}
\]

\[
\text{var}(c^h_1) = \text{var}(y^h_1) + \sum_{j \in J^h} (\theta^h_j)^2 + 2 \sum_{j \in J^h} \theta^h_j \text{cov}(y^h_1, x_j), \quad h > F \tag{D.35}
\]

\[
\text{var}(c^h_1) = (1 - w^h)^2 \text{var}(y^h_1) + \sum_{j \in J^h} (\theta^h_j)^2 + 2(1 - w^h) \sum_{j \in J^h} \theta^h_j \text{cov}(y^h_1, x_j), \quad h \leq F. \tag{D.36}
\]
Taking the first-order condition with respect to \(\theta_0^h \), we get
\[
\pi_0 e^{-Ac_0^h} = E \left[e^{-Ac_1^h} \right], \forall h. \quad (D.37)
\]

Taking the first-order condition with respect to \(\theta_j^h \in J^h \), we get
\[
\begin{align*}
\pi_j e^{-Ac_0^h} & = -A E \left[e^{-Ac_1^h} \left(\theta_j^h + \text{cov}(y_1^h, x_j^h) \right) \right], \ h > F, \quad (D.38) \\
\pi_j e^{-Ac_0^h} & = -A E \left[e^{-Ac_1^h} \left(\theta_j^h + (1 - w^h)\text{cov}(y_1^h, x_j^h) \right) \right], \ h \leq F.
\end{align*}
\]

Dividing equation (D.37) by equation (D.38) for \(h > F \), and by equation (D.39) for \(h \leq F \), and summing up for \(h \in H_j \), we obtain
\[
\left| H_j \right| \frac{\pi_j}{\pi_0} = -A \sum_{h \in H_j} \theta_j^h - A \text{cov} \left(\sum_{h \in H_j, h \leq F} (1 - w^h)y_1^h + \sum_{h \in H_j, h > F} y_1^h, x_j \right). \quad (D.40)
\]

Dividing throughout by \(H_j \), using the market-clearing condition (D.13), and substituting for \(\beta_j \) from the definition (D.16), yields the CAPM pricing relationship of (D.18):
\[
\frac{\pi_j}{\pi_0} = -A \left(\beta_j + \frac{1}{\left| H_j \right|} \beta_j^h \right). \quad (D.41)
\]

Substituting equations (D.37) and (D.41) in equations (D.38) and (D.39) yields the following portfolio choice \(\theta_j^h \):
\[
\begin{align*}
\theta_j^h &= \left(\beta_j + \frac{1}{\left| H_j \right|} \beta_j^h \right) - \theta_j^h, \quad j \in J^h, \ h > F, \quad (D.42) \\
\theta_j^h &= \left(\beta_j + \frac{1}{\left| H_j \right|} \beta_j^h \right) - (1 - w^h)\beta_j^h, \quad j \in J^h, \ h \leq F. \quad (D.43)
\end{align*}
\]

where we have used the definition \(\beta_j^h = \text{cov}(y_1^h, x_j^h) \).

In order to obtain the portfolio choice \(\theta_0^h \), we rewrite the first-order condition (D.37) as
\[
\pi_0 e^{-Ac_0^h} = e^{-AE(C_1^h) + \frac{4}{2} \text{var}(C_1^h)}, \forall h. \quad (D.44)
\]

51
Taking the natural log, substituting equations (D.6) and (D.33) for $h > F$, or equations (D.7) and (D.34) for $h \leq F$, and rearranging yields

$$\theta_h^0 = \frac{1}{1 + \pi_0} \left(y_h^0 - E(y_1^h) - \sum_{j \in J^h} \pi_j \theta_j^h + \frac{A}{2} \text{var}(c_1^h) - \frac{1}{A} \ln(\pi_0) \right), \quad h > F \quad (D.45)$$

$$\theta_h^0 = \frac{1}{1 + \pi_0} \left(y_h^0 + w^h p^h - (1 - w^h) E(y_1^h) - \sum_{j \in J^h} \pi_j \theta_j^h + \frac{A}{2} \text{var}(c_1^h) - \frac{1}{A} \ln(\pi_0) \right), \quad h \leq F. \quad (D.46)$$

Next, substituting equation (D.42) in equation (D.8) and equation (D.43) in equation (D.9) and rearranging, we obtain the three-fund separation theorem:

$$c_1^h = \theta_0^h + \sum_{j \in J^h} \left(\beta_j + \frac{1}{|H_j|} s_j \right) x_j + \left(y_1^h - \sum_{j \in J^h} \beta_j^h x_j \right), \quad h > F \quad (D.47)$$

$$c_1^h = \theta_0^h + \sum_{j \in J^h} \left(\beta_j + \frac{1}{|H_j|} s_j \right) x_j + (1 - w^h) \left(y_1^h - \sum_{j \in J^h} \beta_j^h x_j \right), \quad h \leq F. \quad (D.48)$$

Taking the variance of these expressions yields

$$\text{var}(c_1^h) = \text{var}(y_1^h) - \sum_{j \in J^h} (\beta_j^h)^2 + \sum_{j \in J^h} \left(\beta_j + \frac{1}{|H_j|} s_j \right)^2, \quad h > F \quad (D.49)$$

$$\text{var}(c_1^h) = (1 - w^h)^2 \text{var}(y_1^h) - \sum_{j \in J^h} (1 - w^h)^2 (\beta_j^h)^2 + \sum_{j \in J^h} \left(\beta_j + \frac{1}{|H_j|} s_j \right)^2, \quad h \leq F. \quad (D.50)$$

Finally, to obtain the expressions for c_0^h, we take the natural log of equation (D.44) and substitute expression (D.33) or (D.34) for the respective ranges of h. Rearranging the terms, we get

$$c_0^h = -\frac{1}{A} \ln \frac{1}{\pi_0} + E(y_1^h) + \theta_0^h - \frac{A}{2} \text{var}(c_1^h), \quad h > F \quad (D.51)$$

$$c_0^h = -\frac{1}{A} \ln \frac{1}{\pi_0} + (1 - w^h) E(y_1^h) + \theta_0^h - \frac{A}{2} \text{var}(c_1^h), \quad h \leq F. \quad (D.52)$$
Now, all equilibrium quantities are determined in terms of the risk-free asset’s price, \(\pi_0 \). To determine this, we take the natural log of equation (D.44) and sum over all agents to obtain

\[
H \ln(\pi_0) - A \sum_{h=1}^{H} y_0^h = -A \sum_{h=1}^{H} E(y_1^h) + \frac{A^2}{2} \sum_{h=1}^{H} \text{var}(c_1^h). \tag{D.53}
\]

Dividing throughout by \(H \), using the definitions for mean endowments \(y_0 \) and \(y_1 \) in equation (D.15), and substituting for \(\text{var}(c_1^h) \) from equations (D.23) and (D.29), \(\pi_0 \) can be determined in terms of the model’s primitive quantities as follows:

\[
\pi_0 = \exp \left\{ A (y_0 - E y_1) + \frac{A^2}{2H} \sum_{h=1}^{H} \left[(1 - R^2_h) \text{var}(y_1^h) + \sum_{j \in J^h} \left(\beta_j + \frac{1}{|J_j|} s_j \right)^2 \right] \right\}, \tag{D.54}
\]

where

\[
R^2_h \equiv \frac{\sum_{j \in J^h} (\beta_j)^2}{\text{var}(y_1^h)}, \quad h > F, \quad \text{and} \quad R^2_h \equiv \frac{\sum_{j \in J^h} (1 - w^h)^2 (\beta_j)^2}{\text{var}(y_1^h)}, \quad h \leq F \tag{D.55}
\]

represent the variability of agent \(h \)'s endowment that is spanned by the risky assets tradable by the agent.

The competitive equilibrium is now fully determined in closed-form once the supply conditions are substituted:

\[
s_0^h = w^h E(y_1^h), \quad s_j^h = w^h \beta_j^h, \quad 1 \leq j \leq J, \quad s_j = \sum_{1 \leq h \leq F} s_j^h, \quad 0 \leq j \leq J . \quad \diamond \tag{D.56}
\]