Games in Extensive Form

Extensive game described by following properties:

2. The order of moves (a tree).

Three types of nodes: initial, (noninitial) decision (x), terminal (z)

Each node uniquely assigned to a player

Edges are the actions: $A(x)$ set of actions at nonterminal node x.
Formally, a tree is a set of nodes X endowed with a precedence relationship \succ.

\succ is a partial order: transitive and asymmetric.

Initial node x_0: there is no $x \in X$ such that $x \succ x_0$.

Terminal node z: there is no $x \in X$ such that $z \succ x$.

Additional assumption: *exactly* one immediate predecessor for every noninitial node (*arborescence*).
Node Ownership

Each noninitial node assigned to one player.

\[\iota : X \setminus Z \mapsto N \cup \{ \text{Nature} \} \]

Information Sets

\[h \subseteq X. \ H \text{ is collection of all } h \text{'s.} \]

Restriction: If \(x \) and \(x' \) are in same \(h \), then \(\iota(x) = \iota(x') \) and \(A(x) = A(x') \).

So can write things like \(\iota(h) \) and \(A(h) \).
Interpreting Information Sets

Lack of information about something that has already happened simultaneously

Flipping the future and past: moving Nature’s moves up.

Perfect Recall

[1] \(x \) and \(x' \) in same \(h \) implies \(x \) cannot precede \(x' \).

This isn’t enough. Example.

[2] \(x, x' \in h, \ p \succ x \) and \(\iota(p) = \iota(h) \implies \exists p' \) (with \(p = p' \) possibly) s.t. \(p \) and \(p' \) are in the same information set, while \(p' \succ x' \)

Action chosen along \(p \) to \(x \) equals the action taken along \(p' \) to \(x' \).
Strategies

Define $H_i \equiv \{ h \in H | \iota(h) = i \}$ and $A_i \equiv \bigcup_{h \in H_i} A(h)$.

Pure strategy. Mapping $s_i : H_i \mapsto A_i$ such that $s_i(h) \in A(h)$ for all $h \in H_i$.

S_i set of pure strategies for i.

Can think of it as a mapping or collection of “giant vectors”:

$$S_i = \bigotimes_{h \in H_i} A(h)$$

Behavior strategies. Mapping σ_i on H_i such that

$$\sigma_i(h) \in \mathcal{M}(A(h))$$ for all i

Mixed strategies. Probability distribution m_i over all pure strategies.
Are mixed and pure strategies equivalent? Not without perfect recall!

Pure strategy I: play \((L_1, L_2)\).

Pure strategy II: play \((R_1, R_2)\).

Mixed strategy plays these two with equal probability.

No behavior strategy mimics this.
On the other hand, behavior strategies may not be replicable by mixed strategies:

Behavior strategy: play L or R with equal probability.

But then, the path (L, R) is a possible outcome.

This is never possible with a mixed strategy, which can only yield paths (L, L) or (R, R).
This is ruled out as soon as you make [1] of the perfect recall assumption which is often built into the basic definition of a game.

Fix any behavioral strategy \(\sigma_i \). For any pure strategy \(s_i \) simply define \(m_i(s_i) \) by

\[
m_i(s_i) = \prod_{h_i \in H_i} \sigma_i(s_i(h_i))
\]
Kuhn's Theorem. Assume perfect recall. Then for every mixed strategy there is an equivalent behavior strategy.
“Proof.”

Pick some mixed m_i and any h such that $\iota(h) = i$. Define:

$$P_i(h) = \{s_i \in S_i \mid \text{under } s_i \text{ it is possible to reach } h\}$$

If $m_i(s) > 0$ for some $s \in P_i(h)$, define for every $a \in A(h)$,

$$\sigma_i(a) \equiv \frac{\sum_{s \in P(h), s(h) = a} m_i(s)}{\sum_{s \in P(h)} m_i(s)}$$

Otherwise, $m_i(s) = 0$ for all $s \in P_i(h)$. In that case, set

$$\sigma_i(a) \equiv \sum_{s \in S_i, s(h) = a} m_i(s)$$

Check this is ok with perfect recall.
Credibility and Subgame Perfection

Example. Chainstore paradox.

Subgame. Subtree of original tree with following properties:

initial node not a terminal node of original tree (nor its initial node if a proper subgame)

If \(x \) belongs to Subgame and \(x \in h \), then \(y \) belongs to Subgame for all \(y \in h \).

A (behavior) strategy profile is a subgame perfect equilibrium if it is Nash in every subgame.
Theorem. *In every finite extensive game with perfect recall, a subgame perfect equilibrium exists in behavior strategies.*

Proof. By induction on # of nonterminal nodes.

Assume existence in all trees with no more than \(k \) nonterminal nodes, for some \(k \geq 1 \).

For \(k = 1 \), assertion trivial to verify.

Take game with \(k + 1 \) nonterminal nodes.

If it has no proper subgames use standard theorem, then Kuhn’s Theorem.

If it has, append subgame perfect payoffs to any nonterminal non-initial node and use induction. QED

Counterexample to existence (even of Nash equilibrium) in behavioral strategies when no perfect recall.
Backward Induction

Extensive game of perfect information. Every information set a singleton.

Subgame perfection reduces to *backward induction* for this case.

For any game G, define

$$r(G) = \{x \in X | x \text{ is an immediate predecessor to terminal nodes alone}\}$$

$$s(G) = \{z \in Z | z \text{ has no predecessor in } r(G)\}$$

Begin with $r(G)$. Optimize for i moving at some $x \in r(G)$.

Append resulting payoffs to $r(G)$; redefine as terminal nodes. Consider new game G' with terminal nodes $r(G) \cup s(G)$.

Repeat process until all nodes exhausted. QED
Backward Induction and a Rationality Paradox

Rosenthal’s Centipede

Deviations as trembles

Irrational types