Testing hypotheses in an I(2) model with piecewise linear trends. An analysis of the persistent long swings in the Dmk/$ rate

Søren Johansen a,b,⁎, Katarina Juselius a, Roman Frydman c, Michael Goldberg d

a Economics Department, University of Copenhagen, Denmark
b CREATES, University of Aarhus, Denmark
c Department of Economics, New York University, NY, United States
d Department of Economics, University of New Hampshire, NH, United States

A R T I C L E I N F O

Article history:
Available online 15 March 2010

JEL classification:
C52
C32
F41

Keywords:
PPP
Long swings puzzle
Cointegrated VAR
Test of overidentification

A B S T R A C T

This paper discusses the I(2) model with breaks in the deterministic component and illustrates the model with an analysis of German and US prices, exchange rates, and interest rates in the period 1975–1999. It provides new results on the likelihood ratio test of overidentifying restrictions on the cointegrating relations when they contain piecewise linear trends. One important aim of the paper is to demonstrate that a structured I(2) analysis is useful for a better understanding of the empirical regularities underlying the persistent swings in nominal exchange rates, typical in periods of floating exchange rates.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Over the past three decades, floating currencies have shown a tendency to undergo persistent swings away from purchasing power parity (PPP) for extended periods of time that are followed by periods in which exchange rates move persistently back toward this benchmark.1 These long swings in real exchange rates have puzzled international macroeconomists for a long time. The literature has attempted to account for such fluctuations with a Rational Expectations Hypothesis (REH) sticky-price monetary model, such as Dornbusch (1976) or one of its New Open Economy Macroeconomic (NOEM) formulations; see Lane (2001) for a review article of the NOEM literature.

These models typically imply that the nominal exchange rate and relative goods prices are unit-root processes, while the real exchange rate is stationary. This theory has led empirical researchers to make use of an I(1) model to analyze the data. Most report that the I(1) null hypothesis cannot be rejected for the nominal exchange rate and relative goods prices, but that it can for the real exchange rate in favor of stationarity. They also report that the real exchange rate, though stationary, is very persistent, i.e., a near-I(1) process.

However, assuming that an I(1) model is appropriate, rather than testing whether the I(2) condition can be rejected on open-economy macroeconomic data sets, is problematic. When data are approximately I(2) rather than I(1), a conclusion that the real exchange rate is stationary (or stationary but highly persistent) reached in the I(1) model is likely to be misleading. This is because when an I(1) model is applied to I(2) data, cointegration is not from I(1) to I(0), but from I(2) to I(1). Thus, the ‘consensus’ conclusion in the literature that real exchange rates are stationary but highly persistent might have to be replaced by the conclusion that the change in real exchange rates is stationary but highly persistent. Indeed, the results of Juselius’s (2008) cointegrated VAR analysis of German and US goods prices and exchange rates over the post Bretton Woods period show that this is the case. The paper shows that if the I(1) model is applied, nonetheless, the choice of the PPP puzzle is the inability of one model to account for both the high persistence and the high volatility of real exchange rates. For reviews of this literature, see Rogoff (1996), Taylor and Taylor (2004), Sarno and Taylor (2003) and Mark (2001).

⁎ Corresponding address: Department of Economics, University of Copenhagen, Øster Farimagsgade 5, bld. 26, DK-1353 Copenhagen K, Denmark. Tel.: +45 35323071. E-mail address: soren.johansen@econ.ku.dk (S. Johansen).

1 The PPP puzzle is the inability of one model to account for both the high persistence and the high volatility of real exchange rates. For reviews of this literature, see Rogoff (1996), Taylor and Taylor (2004), Sarno and Taylor (2003) and Mark (2001).
That interest rates are important for a full understanding of the long swings puzzle also follows from the monetary model of Frydman and Goldberg (2007, 2008), which replaces the Rational Expectations Hypothesis (REH) with an imperfect Knowledge Economics (IKE) representation of forecasting behavior. In Frydman et al. (2009), we show that this IKE model implies that relative goods prices, as well as nominal and real exchange rates, are I(2) and that there is a cointegrating relationship between the real exchange rate and the real interest rate differential. All of these results are found in this paper. They are strengthened by other studies that find I(2) trends in other data sets that include exchange rates, goods prices, and money supplies; see Juselius (1994), Kongsted (2003, 2005), Kongsted and Nielsen (2004) and Bacchiocchi and Fanelli (2005).

Thus, there are two competing economic theories attempting to explain the pronounced persistence in exchange data, one claiming that real exchange rates are stationary, though highly persistent, i.e., near I(1), the other claiming that the change of real exchange rates is I(1), but highly persistent, i.e., the level of the real exchange is near I(2). The cointegrated VAR model seems ideal for discriminating between these two views because hypotheses of I(0), I(1), and I(2) can be formulated within the unrestricted VAR without having to impose any of them from the outset.

The paper tests both the I(1) and the I(2) condition in a cointegrated VAR model that describes monthly data for German and US prices, exchange rates and interest rates in the period 1975–1999. Since the I(2) condition cannot be rejected, the data are structured into three different levels of persistence. This enables us to confront the basic assumptions underlying the competing theories with the data.

The reunification of Germany in 1991 was a major institutional event which is likely to have caused a structural break in the data, and the test for overidentifying restrictions on the cointegration structure is developed for the I(2) model with breaks in the deterministic component. The test procedures discussed in this paper build on previous work in Johansen (1992, 1996, 1997, 2000), Rahbek et al. (1999), Paruolo (2000, 2002) and Nielsen and Rahbek (2007).

The paper is organized as follows. Section 2 motivates the need for why the I(2) model needs deterministic components with breaks. Section 3 discusses the Maximum Likelihood parameterization of the I(2) model, while Section 4 shows how to test structural hypotheses in that model. Section 5 estimates an unrestricted VAR model with deterministic components containing breaks, and tests the final model specification. Section 6 discusses the choice of the two reduced rank indices determining the number of I(1) and I(2) trends in the model. Section 7 reports a number of test results based on non-identifying hypotheses as a general description of CI(2, 1) relationships in the data. Section 8 reports an overidentifying long-run structure of polynomially cointegrated relations, and Section 9 uses the MA representation to discuss whether changes in the real exchange rate and long-term interest rate differential can be considered stationary but highly persistent. Section 10 concludes.

2. Deterministic components and the I(2) model

A proper specification of deterministic terms in the I(2) model is necessary for the model to fit the data and hence yield statistically good estimates. From the outset, an I(2) model generates a linear deterministic trend from the initial values, but no trend in the long-run relations. Therefore, if a trend is needed in the cointegrating relations it has to be explicitly modelled. See Rahbek et al. (1999) for a discussion.

Fig. 1, upper panel, shows the graphs of the price differential and the nominal exchange rate and illustrates the tendency in the latter to undergo long swings. Three features stand out: (1) the downward sloping stochastic trend in price differentials; (2) the big persistent swings in the nominal exchange rate evolving around a similar downward sloping trend as in relative prices; and (3) an indication of a change in the slope of the relative price trend around 1991 (possibly also around 1980–1981). The graph in Fig. 1, lower panel, of the real exchange rate, \(rpp = p_1 - p_2 - s_{12} \), shows that the downward sloping trend in relative prices has been approximately canceled by the similar trend in the nominal exchange rate. The long persistent swings remain essentially unchanged.

The change in the relative price trend mentioned in (3) is likely to be associated with the German reunification in 1991:1, that is January 1991. This was a very significant event which is likely to have strongly affected German, but not US, prices. The merging of East and West German prices may have produced a step effect in German prices which, as long as it is purely technical, should be removed prior to the VAR analysis. The possibility of an additive step effect has been tested and the effect removed prior to the VAR analysis using a procedure in Nielsen (2004). In addition, the unification is likely to have produced dynamic effects on prices, exchange rates and interest rates to be accounted for by breaks in the deterministic component within the dynamics of the model. We allow for the possibility of such breaks by a broken linear trend in the long-run relations, a step dummy in the growth rates, and an impulse dummy to account for a blip in the acceleration rates. For a detailed description of the role of deterministic trends in the I(2) model, see Section 3 and Juselius (2006, Chapter 16). These effects are tested in Section 7.

As appears from the graphs of the data in Fig. 2, there is a number of additional outlying observations, the majority of them belonging to the short-term interest rates in the period 1980–1982 and without correcting for outliers. The main conclusions hold, but the extra observations from 1980:2 to 1982:3 from the model analysis.

To summarize, the baseline VAR model is specified with a linear deterministic trend allowing for a shift in the slope in 1991:1, a step and an impulse dummy at the same date, as well as a few additional impulse dummies to be subsequently defined.

3. The I(2) model with piecewise linear deterministic terms

To ensure that the piecewise linear deterministic components do not cumulate to quadratic or cubic trends, we need to discuss how to restrict these components to enter the I(0), I(1), and I(2) directions of the VAR model. Without loss of generality, this discussion can be based on the VAR(3) model formulated in acceleration rates, changes and levels:

\[
\Delta^2 x_t = \Gamma_1 \Delta^2 x_{t-1} + \Gamma \Delta x_{t-1} + \Pi x_{t-1} + \Phi_1 D_{1,t} + \Phi_2 D_{2,t} + \Phi_3 D_{3,t} + \Phi_4 D_{4,t} + \mu_0 + \mu_1 t + \mu_2 b_{1,t} + \epsilon_t, \tag{1}
\]

\[
t = 1975:7, \ldots, 1998:12, \tag{2}
\]

where \(x_t = [pp_1, s_{12}, \Delta p_{2,1}, b_{1,t}, b_{2,1}, s_{12}, s_{2,1}, \] with \(pp_1 = (p_1 - p_2) \) describing the log of relative prices, \(s_{12} \), the Dmk/$ rate, \(b_{1,2}, b_{2,2} \) the long-term bond rates, \(s_{11}, s_{2} \) the short-term interest rates\(^2\) and a subscript 1 stands for Germany and 2 for USA. We denote by \(b_{1,t} = (t - b + 1)^\gamma \) a broken linear trend; \(D_{1,t} \) is a vector

\(^2\) As a sensitivity check, the model has been estimated without the hole in 1980–1982 without correcting for outliers. The main conclusions hold, but the results seem less reliable.

\(^3\) Annual interest rates in percentages have been transformed to monthly rates by dividing by 1200 to achieve comparability with monthly log changes.
of step dummies \((\ldots, 0, 0, 1, 0, \ldots)\), \(D_{\text{tr}}\) is a vector of permanent impulse dummies \((\ldots, 0, 0, 1, 0, \ldots)\), \(D_{\text{tr}}\) is a vector of transitory impulse dummies \((\ldots, 0, 0, 1, -1, 0, 0, \ldots)\), and all parameters are unrestricted.

The hypothesis that \(x_t\) is \(I(1)\) is formulated as a reduced rank hypothesis,

\[
\Pi = \alpha \beta', \quad \text{where } \alpha, \beta \text{ are } p \times r, \tag{3}
\]

implicitly assuming that \(\Gamma\) is unrestricted. The hypothesis that \(x_t\) is \(I(2)\) is formulated as an additional reduced rank hypothesis,

\[
\alpha' \Gamma \beta_{\perp} = \xi \eta', \quad \text{where } \xi, \eta \text{ are } (p - r) \times s_1, \tag{4}
\]

where \(\alpha'\) denotes a \(p \times (p - r)\) matrix of rank \(p - r\) for which \(\alpha' \alpha = 0\), and the notation \(\alpha_{\perp} = \alpha_{\perp} (\alpha'\alpha_{\perp})^{-1}\) is used. Condition (3) is associated with the variables in levels and (4) with the variables.
in differences. The intuition is that the differentiated process also contains unit roots when data are \(I(2)\).

Based upon (4), we define the orthogonal decompositions

\[
\beta_{t+1} = \beta_{1,t} + \beta_{2,t}t^0,
\]

and

\[
\alpha_{t+1} = \alpha_{1,t}t^0 + \alpha_{2,t}t^1,
\]

decompositions of \(r, s_1\), and \(s_2\) respectively. The moving average representation of the solution of the (I(2)) model under assumptions (3) and (4), and the condition \(|\alpha_{t+1}\beta_{t+1}| \neq 0\) (where \(\Psi = \Gamma^T\Gamma + I_p - I_n\)), is given by

\[
x_t = C_2 \sum_{j=1}^{t} \sum_{\ell=1}^{r} (\varepsilon_t + \Phi_s d_{s,t} + \Phi_p d_{p,t} + \phi_{p} d_{\eta_{t-1}}) + \mu_t + \mu_t d_{s,t} + \mu_2 I_{s(1:1)} + C_1 \sum_{j=1}^{t} (\varepsilon_t + \Phi_s d_{s,t} + \Phi_p d_{p,t} + \phi_{p} d_{\eta_{t-1}}) + C_s(L)(\varepsilon_t + \Phi_s d_{s,t} + \Phi_p d_{p,t} + \phi_{p} d_{\eta_{t-1}}) + \mu_t + \mu_t d_{s,t} + \mu_2 I_{s(1:1)} + A + Bt,
\]

where \(A\) and \(B\) are functions of initial values \(x_0, x_{-1}, x_{-2}\) and the coefficient matrices are complicated functions of the parameters, satisfying the relations

\[
C_2 = \beta_{12}(\alpha_{2,t}^T\Psi \beta_{12})^{-1} \beta_{12},
\]

\[
\beta_t^T C_1 + \Gamma C_2 = 0,
\]

(7)

\[
\beta_{1,t} C_1 = -\tau_x t^0 (I - \psi C_2),
\]

\[
(\beta, \beta_{1,t})B = 0, \quad \beta_t^T + \Gamma^T B = 0;
\]

see Johansen (1992) for more details. It follows from (5), (6), (7) and (8) that the processes

\[
\Delta^2 x_t, \quad \beta_t^T x_t + \Gamma^T \Delta x_t, \quad (\beta, \beta_{1,t}) \Delta x_t
\]

are trend stationary. This means that \(x_t\) is \(I(2)\), and that the long-run (polynomially cointegrating) relations are \(\beta_t x_t + \Gamma^T \Delta x_t\).

Finally, \((\beta, \beta_{1,t}) \Delta x_t\) are the medium-run relations between the differences of \(x_t\).

To facilitate the interpretation of the \(I(2)\) trends and how they load into the variables, we denote \(\beta_{12} = \beta_{12}(\alpha_{2,t}^T\Psi \beta_{12})^{-1}\), so that

\[
C_2 = \beta^T_{1,2} x_t.
\]

It appears that \(C_2\) has a similar reduced rank representation as \(C_1\) in the \(I(1)\) model, so it is straightforward to interpret \(\alpha_{1,t} \sum_{j=1}^{t} \sum_{\ell=1}^{r} \varepsilon_t\) as a measure of the \(s_2\) second-order stochastic trends which load into the variables \(x_t\) with the weights \(\beta_{1,t}^T\).

From (5), it follows that an unrestricted constant will cumulate twice to a quadratic trend, and an unrestricted trend to a cubic trend, and similarly for the step dummy and the broken trend.

Thus, the coefficients of the deterministic components need to be appropriately restricted in the model equations to avoid undesirable effects in the process.

Since the parameters in model (1) are restricted by the two reduced rank conditions, (3) and (4), Johansen (1997) proposed a parameterization in which the individual parameters are variation independent. The parameterization below, supplemented with deterministic terms, is used in the empirical analysis:

\[
\Delta^2 x_t = \alpha \left[\rho^T \tau_{1,t} \left(x_{1,t-1} \left(t_{1,1:t-1} \right) + \Psi \left(\delta_{1:t-1} \right) D_{1:t-1,1:t-1} \right) + \alpha_{1,t} D_{p,t} + \phi_p d_{\eta_{t-1}} + \varepsilon_t \right]
\]

(12)

where \(\alpha_{1,t} = \Omega_{1,t} (\alpha_{2,t}^T \Omega_{1,t}^{-1})^{-1}, t_{1,1:t-1}\) is a linear trend starting in 1991:1, \(D_{12,t}\) is a step dummy starting in 1991:1. \(D_{p,t}\) is a vector of impulse dummies, and \(d_{\eta_{t-1}}\) is a transitory dummy; see Table 1 for a complete description.

In the following, we use \(d_{t} = (t_{1,1:t-1}, t^0)\) and write (12) in a more compact form as

\[
\Delta^2 x_t = \alpha (\rho^T \tau_{1,t} \left(x_{1,t-1} \right) D_{1:t-1,1:t-1} + \alpha_{1,t} D_{p,t} + \phi_p d_{\eta_{t-1}} + \varepsilon_t),
\]

(13)

where \(\tau = (t^0, t_{1,0}, t_0)\), \(\psi = (\psi_0, \psi_{01}, \psi_{02})\), and \(x_1 = (\alpha_{1,t}, \beta_{1,t})\).

In the polynomially cointegrating relation \(\rho^T \tau_{1,t} \left(x_{1,t-1} \right) D_{1:t-1,1:t-1}\), the term \(\tau^T \Delta x_{t-1}\) is always trend stationary, so we define the coefficient \(\delta = \tau^T \tau^{-1} (\tau^T \tau)^{-1} \tau^T\) as the coefficient to \(\Delta x_{t-1}\) needed to render \(\beta^T x_t + \delta \Delta x_t\) trend stationary.

We let \(\beta_{12}\) be the parameter of \(x_t\). An advantage of this parameterization is that the parameters \((\alpha, \tau, \psi, \rho, \phi, \phi_1, \Omega)\) are variation independent. We next give expressions for the main components of the deterministic trends in \(x_t\) and \(\tau^T \tau\), and the trend stationary relations \(\rho^T \tau_{1,t} \left(x_{1,t-1} \right)\) and \(\tau^T \Delta x_t\). The proof of the next lemma is essentially contained in Rahbek et al. (1999), which investigated the case of a restricted linear term. We need to pay special attention to the dummy variables which generate many different trends, because they are not linearly independent when shifted in time.

Lemma 1. The deterministic term in the model equation (12),

\[
m_t = \alpha t^0 \tau_{1,t} d_{1:t} + (\alpha \psi + \alpha_{1,t} \delta) \Delta d_{1:t-1} + \phi_{1,t} D_{p,t} + \phi_p \eta_{t-1},
\]

implies that \(x_t\) has a deterministic trend which consists of \(d_{t} = (t_{1,1:t-1}, t^0)\), a linear trend from the initial values, and broken linear trends from the impulse dummies plus terms that are bounded, and a sum of impulse dummies with exponentially decreasing coefficients.

Hence the trend in \(\Delta x_t\) is a sum of impulse dummies with exponentially decreasing coefficients.

Proof. It follows from (5) that the initial values generate a linear trend \(A + Bt\), and the term \(\phi_{1,t} D_{p,t} + \phi_p \eta_{t-1}\) generates broken linear trends, step dummies, and a linear combination of impulse dummies with exponentially decreasing coefficients. The remaining terms are generated by \(d_{t}\) and \(\Delta d_{t-1}\), and give

\[
[C_2 \alpha_{1,t} \kappa^T \tau_{1,t} + C_1 \alpha \rho^T \tau_{1,t}] \sum_{j=1}^{t_j} d_{j-1} + C_1 [\alpha \psi_0 + \alpha_{1,t} \kappa^T \tau_{1,t}] d_{t-1} + \sum_{i=1}^{t_j} \sum_{j=1}^{t_i} \kappa^T \sum_{j=1}^{t_{i-1}} \sum_{j=1}^{t_{i-1}} \psi_0 + \alpha_{1,t} \kappa^T \tau_{1,t} \Delta d_{t-1} - i]
\]

where we have used that \(C_2 \alpha = 0\); see (6).

We want to prove that

\[
C_2 \alpha_{1,t} \kappa^T + C_1 \alpha \rho^T \tau_{1,t} = 0,
\]

by multiplying it by \(\beta, \beta_{1,t}, \beta_{1,t}^T\), so that \(\sum_{j=1}^{t_j} d_{j-1} \neq 0\) does not appear.

1. Multiplying by \(\beta^T\), we find the result from \(\beta_t C_2 = 0\) and \(\beta_t C_{1,t} = 0\); see (6) and (7).

2. Multiplying by \(\beta_{1,t}\), and using \(\beta_{1,t} C_2 = 0\), we see that the first term is zero, and from the expression \(\beta_{1,t} C_1 = -\tilde{\alpha}_{1,t}(I_p - \psi C_2)\), see (8), we find that the next term is zero.

3. Finally, we multiply by \(\beta_{1,t}^T\), and show that

\[
\beta_{1,t}^T C_2 \alpha_{1,t} \kappa^T + \beta_{1,t}^T C_1 \alpha \rho^T \tau_{1,t} = 0.
\]
From (7), we find
\[C_0\alpha = -\tilde{C}_0\Gamma \tilde{\beta} = -\tilde{C}_0\alpha_{\perp,2} \kappa' \tilde{\tau}' \tilde{\beta}, \]
so we get
\[\beta_{12}^t C_0\alpha_{\perp,2} \kappa' = \beta_{12}^t C_0\alpha_{\perp,2} \kappa'(t_{r+1} - \tilde{\tau}' \tilde{\beta} \rho'). \]
The following identity holds:
\[t_{r+1} - \tilde{\tau}' \tilde{\beta} \rho' = t_{r+1} - \tilde{\tau}' \rho (\rho' \tilde{\tau}' \tau \rho)^{-1} \rho'. \]
To see this, set \(\beta = \tau \rho \) and multiply by the full rank matrix \((\rho \perp \tau \rho).\)
Thus we find
\[\beta_{12}^t C_0\alpha_{\perp,2} \kappa' \rho_\perp = \beta_{12}^t C_0\alpha_{\perp,2} \kappa' \rho_\perp (\rho_\perp (\tau' \tau)^{-1} \rho_\perp)^{-1} \rho_\perp (\tau' \tau)^{-1}. \]
Finally, we use that \(\alpha_{\perp,2} = \alpha_{\perp,1} \xi_1, \) where \(\xi = \kappa \rho_\perp, \) and find
\[C_0\alpha_{\perp,2} \rho_\perp = \beta_{12}^t (\alpha_{\perp,2} \psi_1 \beta_{12}^t) \kappa' \rho_\perp, \]
but
\[\alpha_{\perp,2} \kappa' \rho_\perp = \xi_1 \alpha_{\perp,2} \tau \rho (\alpha_{\perp,2} \tau \rho)^{-1} \kappa' \rho_\perp, \]
Thus the trend in \(x_1 \) has the form indicated in the lemma. \(\Box \)

Corollary 2. The deterministic term in \(\Delta^2 x_i, \tilde{\beta} x_i + \tilde{\psi}' \tilde{\Delta} x_i, \) and \(\tilde{\tau}' \tilde{\Delta} x_i \) consists of a sum of impulse dummies with exponentially decreasing weights, which we denote generically by \(R_i. \) It follows that
\[E(\beta' x_i + \psi' \Delta x_i) = -\rho' \tilde{\tau}' \tilde{d}_i - \psi_\perp' \tilde{d}_i + R_i, \]
\[E(\tilde{\tau}' \Delta x_{t-1}) = -\tilde{\tau}' \Delta d_i + R_i, \]
Therefore
\[E(\tilde{\tau}' x_i) = -\tilde{\tau}' \tilde{d}_i + \text{bounded terms}. \]

Proof. It follows from Lemma 3 that \(E(\Delta^2 x_i) = \tilde{R} \rho_\perp, \) and from the model equation (12) we find, using \(\alpha_{\perp,2} = (\alpha' \Omega' \alpha)^{-1} \alpha' \Omega, \) that
\[\alpha_{\perp}^t E(\Delta^2 x_i) = E(\rho' \tilde{\tau}' x_{t-1} + \tilde{\psi}' \tilde{\Delta} x_{t-1}) + \alpha_{\perp}^t \Phi_0 \Delta d_t + \alpha_{\perp}^t \Phi_1 \Delta d_{t-1}. \]
\[= \kappa' \tilde{E}(\tilde{\tau}' \Delta x_{t-1}) + \alpha_{\perp}^t \Phi_0 \Delta d_t + \alpha_{\perp}^t \Phi_1 \Delta d_{t-1}. \]
From the first relation it is seen that
\[E(\beta' x_i + \psi' \Delta x_i) = -\rho' \tilde{\tau}' d_i - \psi_\perp' \tilde{d}_i + R_i, \]
so
\[\rho \tilde{E}(\tilde{\tau}' \Delta x_{t-1}) = E(\beta' \Delta x_{t-1}) = -\rho' \tilde{\tau}' \Delta d_i + R_i. \]
This has the interpretation that the errors of the first equation are not cumulating and in this sense the variable is purely adjusting Juselius (2006, p. 200).

Both hypotheses are restrictions on the coefficient of the (asymptotically) stationary polynomial cointegration relations, $\beta x_{t-1} + \delta \Delta x_{t-1}$, and therefore the likelihood ratio test statistics are asymptotically χ^2 with degrees of freedom mr and $p + r - 1$, respectively, corresponding to the number of restricted parameters.

4.2. Tests on $\tilde{\beta}$

We consider in Section 8 tests for linear restrictions on each $\tilde{\beta}$ vector

$$\tilde{\beta} = (h_1 + H_1 \varphi_1, \ldots, h_p + H_p \varphi_p),$$

where h_p is $p_1 \times 1$ and linearly independent of H_1, which is $p_1 \times m_1$ of rank m_1, both known, and φ is an unknown parameter of dimension $m_1 \times 1$.

We then need the following result.

Lemma 3. In the $(1,2)$ model with piecewise linear deterministic trends, and β identified by the restrictions (21), the asymptotic distribution of the maximum likelihood estimator of $(\varphi_1, \ldots, \varphi_p)$ is mixed Gaussian, so the asymptotic distribution of the likelihood ratio test for the hypothesis (21) is $\chi^2(\sum_{i=m_1}(p_1 - r - m_i))$.

The proof is given in the Appendix by establishing that the asymptotic distribution of the score function is mixed Gaussian with a non-singular conditional variance. Related results have been derived previously. In Johansen (1997), the asymptotic distribution of $\hat{\beta}$ was given for the case of no restriction and no deterministic components, and Rahbek et al. (1999) show the result for the case of no restrictions when the process has a linear trend. General conditions on $\tilde{\beta}$ were dealt with by Boswijk (2000) and Johansen (2006a), but for the model with no deterministic components. Here we give a direct proof for the model at hand when $\tilde{\beta}$ is identified by the linear restrictions (21).

The result will be applied to simplify the estimated polynomial cointegration relations. The hypotheses do not involve the coefficient δ in $\beta x_t + \delta \Delta x_t$, because the asymptotic theory for such hypotheses has not been worked out.4

4.3. Tests on $\tilde{\tau}$

By decomposing $\tilde{\tau} = \tilde{\tau}_{p0} + \tilde{\tau}_{p1} \tilde{\omega}_1$, it was proved above that $\hat{\beta} - \tilde{\beta}$, suitably normalized, is asymptotically Gaussian given $\beta^{\prime}_1 \tilde{C}_2 \tilde{C}_1 \tilde{C}_2 W(s)ds$ and $\beta^{\prime}_1 \tilde{C}_2 W(u);$ see (30).

Similarly, one can show that $\tilde{\tau} - \tilde{\tau}_0$, suitably normalized, is asymptotically mixed Gaussian given $\beta^{\prime}_1 \tilde{C}_2 W(u)$. The two limits are mixed Gaussian but not jointly mixed Gaussian, so hypotheses that involve both $\tilde{\beta}$ and $\tilde{\tau}$ need not give rise to an asymptotic χ^2 distribution. Johansen (2006a, Theorem 5) gave a sufficient condition for asymptotic mixed Gaussian inference in a submodel of the $(1,2)$ model. The condition formulates a separation between the parameters, which ensures that the usual conditioning argument leading to asymptotic χ^2 distributions holds. In the case of deterministic terms we have exactly the same structure of asymptotic distributions, so the same theorem holds, and the investigation of hypotheses on $\tilde{\tau}$ is valid also for $\tilde{\tau}$.

5. Mis specification testing of the baseline VAR

The VAR model in (12) was specified to account for the German reunification as explained in Section 2.5 In addition there are a number of outlying observations that need to be accounted for. Since the VAR estimates have been shown to be reasonably robust to moderate excess kurtosis (long tails) as long as the error distribution is symmetrical (Gonzalo, 1994) only extraordinarily large shocks producing skewed residuals have been corrected for.5 The dummies and their estimated effects are reported in Table 1, which shows that the very large shocks were associated with large unexplainable changes (given our data and our model) in the short-term interest rates and the US bond rate. The dummy variable, D_{tax}, measures the impact on German prices from a number of excise taxes in 1991:7, 1991:1, and 1993:1 to finance the

% We consider first the same restriction on all vectors in $\tilde{\tau}$; that is,

$$\tilde{\tau} = H_0 \varphi,$$

where H is $p_1 \times m$ is known and φ is an $m \times (r + s_1)$ matrix of unknown parameters. An equivalent formulation is $R \tilde{\tau} = 0$, where $R = H_0$.

The other hypothesis corresponds to (20); that is,

$$\tilde{\tau} = (b, b_{1} \varphi),$$

where b is $p_1 \times 1$ and known and φ is a $(p_1 - 1) \times (r + s_1 - 1)$ matrix of unknown parameters.

The test statistic for the first test is asymptotically distributed with degrees of freedom $(p_1 - m)(r + s_1)$ and, in general, the test for the second one is also asymptotically distributed as χ^2 with $s_2 - 1$ degrees of freedom. There is, however, one case when the asymptotic distribution is not a χ^2 distribution. This is when the vector b is a vector in $\tilde{\beta}$; that is, when the hypothesis $\beta = (b, b_{1} \xi)$ is satisfied; see the discussion of this hypothesis in Johansen (2006a).

This problem can be avoided by first testing the hypothesis $\beta = (b, b_{1} \xi)$ and, if accepted, then b is a vector in $\tilde{\tau}$. If it is rejected, we can test $\tau = (b, b_{1} \varphi)$ and apply the χ^2 distribution because we have checked that $b \notin sp(\tilde{\beta})$.

![Table 2: Mis specification tests.](image-url)

<table>
<thead>
<tr>
<th>Test</th>
<th>Multiplied p-values (in brackets)</th>
<th>χ^2 (degrees of freedom)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multivariate tests (p-values in brackets)</td>
<td>$\chi^2(49) = 69.98$</td>
<td>0.03</td>
</tr>
<tr>
<td>Residual autocorrelation LM(1)</td>
<td>$\chi^2(49) = 22.38$</td>
<td>1.03</td>
</tr>
<tr>
<td>Test for normality</td>
<td>$\chi^2(14) = 81.64$</td>
<td>0.00</td>
</tr>
<tr>
<td>Test for ARCH LM(1)</td>
<td>$\chi^2(784) = 942.43$</td>
<td>0.00</td>
</tr>
</tbody>
</table>

5 All calculations have been performed in the computer package CATS in RATS (Dennis et al., 2005).
reunification. All dummy variables, except the one in 1984:1 which is a transitory dummy (..., 0, 1, -1, 0, ...), are impulse dummies (..., 0, 1, 0, ...).

With this model specification, Table 2 shows that the model passes most of the specification tests. However, multivariate normality and no ARCH are rejected. The former is mostly due to excess kurtosis in the nominal exchange rate and the interest rates. The latter is mostly due to some ARCH effects in the bond rates. Because the cointegrated VAR results should be reasonably robust to excess kurtosis and ARCH effects as long as they are moderately sized, we continue with this model specification.

6. Determining the two reduced rank indices

The number of stationary polynomially cointegrating relations, \(r \), and the number of \(I(1) \) trends, \(s_1 \), among the \(p - r \) common stochastic trends are determined by the likelihood ratio test. The asymptotic distribution was found by Nielsen and Rahbek (2007) for the case of no deterministics, and Kurita (2007) found the limit distributions when there are broken linear trends. Since our model has a broken linear trend restricted to be in the cointegration relations, and a shift dummy restricted to differences, the asymptotic distributions of the likelihood ratio tests have been simulated with a program kindly made available by Heino Bohn Nielsen.

Table 3 reports the tests of the joint hypothesis \((r, s_1, s_2) \) for all values of \(r, s_1 \) and \(s_2 \), where \(s_2 \) is the number of \(I(2) \) trends and \(s_1 = p - r - s_2 \). The test procedure starts with the most restricted model \((r = 0, s_1 = 0, s_2 = 7) \) in the upper left-hand corner, continues to the end of the first row \((r = 0, s_1 = 7, s_2 = 0) \), and proceeds similarly row-wise from left to right until the first acceptance.

The first non-rejection is for \((r = 2, s_1 = 4, s_2 = 1) \) with a \(p \)-value of 0.17. This case implies six unit roots in the model, which is consistent with the results in Table 4 which suggest that the unrestricted VAR contains at most six (near) unit roots. The following case \((r = 3, s_1 = 2, s_2 = 2) \) is strongly accepted and similarly implies six unit roots in the model. To further check these two cases, Table 4 reports the roots for the case of \(r = 2, 3 \) and \(s_2 = 0, 1, 2 \), respectively. The case \((r = 3, s_1 = 4, s_2 = 0) \) would leave two near unit roots (0.93 and 0.91) in the model, whereas \((r = 2, s_1 = 5, s_2 = 0) \) would leave one near unit root (0.90) in the model. Imposing either \((r = 2, s_1 = 4, s_2 = 1) \) or \((r = 3, s_1 = 2, s_2 = 2) \) removes all large roots from the model. Therefore, the choice seems to be between two (three) polynomial cointegration relations \(\{\tilde{p}^\beta_1 \Delta x_t, \tilde{p}^\beta_2 \Delta x_t\} \) and three (two) medium-run relations in differences \(\{\tilde{p}^\beta_1 \Delta x_t, \tilde{p}^\beta_2 \Delta x_t\} \). Checking the \(t \)-values of \(\alpha_3 \) shows five highly significant

Table 3

The likelihood ratio test statistics for cointegration rank indices.

<table>
<thead>
<tr>
<th>(p - r)</th>
<th>(r)</th>
<th>(s_1 = 7)</th>
<th>(s_1 = 6)</th>
<th>(s_1 = 5)</th>
<th>(s_1 = 4)</th>
<th>(s_1 = 3)</th>
<th>(s_1 = 2)</th>
<th>(s_1 = 1)</th>
<th>(s_1 = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0</td>
<td>1736.66</td>
<td>1401.16</td>
<td>1136.50</td>
<td>907.46</td>
<td>714.25</td>
<td>527.21</td>
<td>378.62</td>
<td>279.67</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1124.95</td>
<td>894.68</td>
<td>668.66</td>
<td>479.63</td>
<td>328.40</td>
<td>199.85</td>
<td>159.87</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>655.74</td>
<td>464.29</td>
<td>280.35</td>
<td>150.24</td>
<td>103.36</td>
<td>94.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>274.49</td>
<td>144.03</td>
<td>78.91</td>
<td>48.72</td>
<td>43.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>73.69</td>
<td>41.69</td>
<td>24.67</td>
<td>23.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>22.13</td>
<td>11.12</td>
<td>8.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>8.18</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4

The seven largest estimated characteristic roots.

<table>
<thead>
<tr>
<th>(r)</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0.98</td>
<td>0.98</td>
<td>0.97</td>
<td>0.89</td>
<td>0.89</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.93</td>
<td>0.91</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.90</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.51</td>
<td></td>
</tr>
</tbody>
</table>

7 The series are plotted as a 12-month moving average to filter out the strong seasonal and other high-frequency components in prices. The data used in the analysis is of course non-filtered.
Table 5
An identified long-run structure in β.

<table>
<thead>
<tr>
<th>β</th>
<th>s_{12}</th>
<th>Δp_{12}</th>
<th>b_1</th>
<th>b_2</th>
<th>s_1</th>
<th>s_2</th>
<th>t_{12}, t^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_1</td>
<td>-0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>1.00</td>
<td>-1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>β_2</td>
<td>0.00</td>
<td>0.001</td>
<td>0.09</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>-1.00</td>
</tr>
<tr>
<td>β_3</td>
<td>-0.01</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.74</td>
<td>0.00</td>
</tr>
<tr>
<td>β_4</td>
<td>0.00</td>
<td>0.001</td>
<td>0.09</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>-0.36</td>
</tr>
<tr>
<td>β_5</td>
<td>-0.92</td>
<td>0.15</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>β_6</td>
<td>-0.51</td>
<td>-0.17</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>β_7</td>
<td>1.31</td>
<td>-0.07</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.05</td>
<td>-0.06</td>
<td>-0.05</td>
</tr>
<tr>
<td>α_1</td>
<td>0.39</td>
<td>-4.47</td>
<td>-0.59</td>
<td>0.00</td>
<td>-0.03</td>
<td>0.03</td>
<td>-0.04</td>
</tr>
<tr>
<td>α_2</td>
<td>0.29</td>
<td>2.88</td>
<td>-0.29</td>
<td>-0.03</td>
<td>0.00</td>
<td>-0.06</td>
<td>0.00</td>
</tr>
<tr>
<td>α_3</td>
<td>-0.29</td>
<td>-1.47</td>
<td>-0.48</td>
<td>0.01</td>
<td>0.00</td>
<td>0.02</td>
<td>-0.02</td>
</tr>
</tbody>
</table>

* The trend has been multiplied by 10,000.

Fig. 3. Graphs of Δp_{12} (upper panel), Δt_{12} (middle panel), and Δp_{12} (lower panel). All three series are smoothed by a 12-month moving average filter.

7.1. Same restriction on all \tilde{r}

There are a number of interesting hypotheses that can be formulated as the same restrictions on \tilde{r}, described in Section 4.3, expressed either as $\tilde{r} = H\omega$ or $R\tilde{r} = 0$. We test the following four hypotheses:

1. H_1: $R\tilde{r} = 0$, where $R\tilde{r} = [1, 1, 0, 0, 0, 0, 0, 0, 0, 0]$; i.e., we test whether we can impose the ppp restriction on all \tilde{r} vectors. If not rejected, it would imply to the nominal to real transformation $x_t = [ppp, \Delta p_{11}, \Delta p_{22}, \Delta p_{12}, b_{12}, s_{12}, s_{22}]$ would be economically valid (Kongsted, 2005) in the sense of transforming an $I(2)$ vector to an $I(1)$ without loss of information. The hypothesis is rejected based on $\chi^2(5) = 16.64$ [0.01].

2. H_2: $R\tilde{r} = 0$, where $R\tilde{r} = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]$; i.e., we test whether the broken trend is long-run excludable from \tilde{r}. Based on $\chi^2(5) = 9.99$ [0.08], the hypothesis was borderline not rejected. Thus, there is only weak evidence that the direction of the trend in relative prices and/or nominal exchange rates changed at the time of the reunification of Germany.

3. H_3: $R\tilde{r} = 0$, where $R\tilde{r} = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]$; i.e., we test whether the trend is long-run excludable from \tilde{r}. The hypothesis was rejected based on $\chi^2(5) = 13.75$ [0.02]. Thus, there is some evidence that the trend is economometrically needed as a local approximation of the downward sloping trend in relative prices and in the nominal exchange rate.

4. H_4: $R\tilde{r} = 0$, where $R\tilde{r} = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]$; i.e., we test whether the trends can be left out of the long-run relations. The hypothesis was rejected based on $\chi^2(10) = 24.50$ [0.01]. Thus, the hypothesis that the downward sloping trend strongly visible in Fig. 1 is stochastic rather than deterministic is rejected. However, the hypotheses of no trends were only borderline rejected, which supports our prior assumption that a deterministic trend should only be considered a local approximation.

Imposing the ppp transformation of the data $[ppp, \Delta p_{11}, \Delta p_{22}, \Delta p_{12}, b_{12}, s_{12}, s_{22}]$ is not being supported by the test, is likely to suppress some information in the data. The estimated long-run structure in Section 8 shows that one relation is consistent with the ppp transformation, whereas the other two are not. Also, test
results of H_2–H_4 show that the linear trend is significant in the long-run relations. The hypotheses that the slope changed at the reunification seems to have empirical support, though not very significantly so. The estimated results in Section 8 show that the trend effects in the long-run relations are absolutely tiny but, nevertheless, highly significant. Altogether, the above tests seem to confirm our model specification.

7.2. A known vector in $\mathbf{\tilde{r}}$

Next, we shall test five hypotheses formulated as a known vector \mathbf{b} in $\mathbf{\tilde{r}}$. If not rejected, they imply that the variable in question (conditional on Δz_{t-1}) is at most $I(1)$. If, in addition, it is not a vector in $\mathbf{\tilde{p}}$, then the test implies it is $I(1)$. This hypothesis was rejected for all variables tested below, which implies that our tests are tests of $I(1)$.

1. H_5: $\mathbf{\tilde{r}} = (d_1, d_1, \psi)$ where $d_1 = [1, 0, 0, 0, 0, 0, 0, 0, 0]$; i.e., we test whether relative price is $I(1)$. This hypothesis is strongly rejected based on $\chi^2(4) = 55.56[0.00]$, implying that this variable can be considered $I(2)$.

2. H_6: $\mathbf{\tilde{r}} = (d_2, d_2, \psi)$ where $d_2 = [0, 1, 0, 0, 0, 0, 0, 0, 0]$; i.e., we test whether the nominal exchange rate is $I(1)$. This hypothesis is rejected based on $\chi^2(4) = 9.76[0.04]$, implying that this variable can be considered $I(2)$.

3. H_7: $\mathbf{\tilde{r}} = (d_3, d_3, \psi)$ where $d_3 = [1, -1, 0, 0, 0, 0, 0, 0, 0]$; i.e., we test whether the real exchange rate is $I(1)$. This
hypothesis is not rejected based on \(\chi^2(4) = 4.90 \) [0.30], which implies that \(\Delta \rho p p \) can be considered \(I(1) \).

4. \(\mathcal{H}_5: \tilde{e} = (d_4, d_{4,4}, w) \) where \(d_4 = [0, 0, 0, 1, -1, 0, 0, 0] \); i.e., we test whether the bond rate spread is \(I(1) \). This hypothesis is not rejected based on \(\chi^2(4) = 3.65 \) [0.46], which implies that \(b_{1,2} - b_{2,1} \) can be considered \(I(1) \).

5. \(\mathcal{H}_6: \tilde{e} = (d_5, d_{5,4}, w) \) where \(d_5 = [0, 0, 0, 0, 0, 1, -1, 0, 0] \); i.e., we test whether the short spread is \(I(1) \). This hypothesis is border-line not rejected based on \(\chi^2(4) = 8.43 \) [0.08], which implies that this variable can be considered \(I(1) \) but with a large second root.

As discussed in the introduction, the monetary model with IKE implies that \(\Delta \rho p p \) is stationary but highly persistent, or near \(I(1) \), whereas REH implies that \(\Delta \rho p p \) is white noise or alternatively that \(\rho p p \) is stationary. The graphs of \(\Delta s_{12,t} \) and \(\Delta \rho p p \) in Fig. 3 illustrate that both are highly persistent processes, which is supported by the test results of \(\mathcal{H}_5 \) and \(\mathcal{H}_6 \). The graph of \(\Delta \rho p p \) in the lower panel looks almost indistinguishable from the graph of \(\Delta s_{12,t} \) though with opposite sign. The fact that \(\mathcal{H}_5 \) could not be rejected must, therefore, imply that \(\Delta \rho p p \) (though stationary) is a highly persistent process. This is also confirmed by the estimated Moving Average (MA) representation in Section 9. Hypothesis \(\mathcal{H}_6 \) could also not be rejected, implying that the \(\rho p p \) and \(b_{1,1} - b_{2,1} \) are of a similar order of integration and, hence, could be cointegrated (as they turned out to be). As the monetary model with IKE implies cointegration between the two variables, this is of some interest.

7.3. Hypotheses on \(\alpha \)

Finally, we shall test two hypotheses described in Section 4.1 both formulated on \(\alpha \). The first one is a test of a zero row in \(\alpha \) and implies no long-run levels feedback of the variable in question. The second is a test of a unit vector in \(\alpha \) and implies pure adjustment of the variable in question.

1. \(\mathcal{H}_{10}: \ell^i \alpha = 0 \), where \(\ell^i \) is the \(i \)th unit vector. This hypothesis was not rejected for nominal exchange rate, \(\chi^2(3) = 5.24 \) [0.15], and the US bond rate, \(\chi^2(3) = 1.27 \) [0.74]. The joint hypothesis is also accepted based on \(\chi^2(6) = 6.578 \) [0.362].

2. \(\mathcal{H}_{11}: \alpha = (\epsilon, e_1, e_2, \phi) \). This hypothesis was accepted for the US inflation rate based on \(\chi^2(3) = 2.41 \) [0.66]. Thus, US prices seem purely adjusting.

The findings that there is little long-run levels feedback on the US bond rate and the nominal exchange rate, and that prices are strongly adjusting are hard to reconcile with the REH theories, but again perfectly consistent with IKE behavior.

8. Testing identifying restrictions on the long-run structure

The decomposition \(\tilde{e} = (\tilde{\beta}, \tilde{\beta}_{1,1}) \) defines three stationary polynomially cointegrating relations, \(\tilde{\beta}_{1,i} \Delta X_t + \tilde{\phi}_i \Delta X_{t-1} \), \(i = 1, 2, 3 \), and five stationary cointegration relations between the differentiated variables, \(\tilde{e} \Delta X_t \). How to test over-identifying restrictions on \(\tilde{\beta} \) was discussed in Section 4.2, whereas overidentifying tests on \(\tilde{\beta}_{1,1} \) have not yet been derived. Even though unrestricted estimates of \(\tilde{\beta}_{1,1} \) can be calculated, we will not discuss them here as they may not be economically meaningful.

To obtain standard errors of the estimated \(\tilde{\beta} \) coefficients we need to impose identifying restrictions on each of the polynomially cointegrating relations reported above. The asymptotic distribution of the test of identifying restrictions on \(\tilde{\beta} \) is given in Lemma 3, and the results in Table 5.

When interpreting the \(\tilde{\beta} \) relations below we shall only include the first two elements of \(\tilde{\beta} \) \(\Delta X_t \) corresponding to the inflation rate differentials and the depreciation/appreciation rate, as \(\rho p p \) and the \(s_{12} \) were the only variables tested to be \(I(2) \) in the previous section.

The first cointegrating relation involves the long-term real interest rate spread and \(\rho p p \). Similar relationships have previously been found in Juselius (1995; 2006, Chapter 21) and Juselius and MacDonald (2004, 2007). The close co-movements between the two series, illustrated in Fig. 1, are quite remarkable.\(^9\)

\[
\tilde{\beta}_{1,1}^t x + \tilde{\phi}_1 \Delta X_t = (b_1 - 0.92 \Delta p_1) - (b_2 - 0.92 \Delta p_2)
\]

\[+ 0.15 \Delta s_{12} - 0.01 \rho p p + 0.000007 \tau. \tag{24}
\]

The second is a relation between the US term spread and US inflation relative to German inflation. It can be interpreted as expected inflation, measured by the term spread, as a function of actual inflation rates and the change in the Dmk/$ rate:

\[
\tilde{\beta}_{2,1}^t x + \tilde{\phi}_2 \Delta X_t = (b_2 - s_2) + 0.60 \Delta p_r - 0.51 \Delta p_r
\]

\[+ 0.17 \Delta s_{12} + 0.001 s_{12} + 0.000019 s_{91}. \tag{25}
\]

The third relation, essentially a relation for German inflation rate, is similar to the relation found in Juselius and MacDonald (2007). It shows that the German inflation rate has been (almost) homogeneously related to US inflation rate, German short-term interest rate, and the change in the Dmk/$ rate:

\[
\tilde{\beta}_{3,1}^t x + \tilde{\phi}_3 \Delta X_t = 1.31 \Delta p_1 - 0.31 \Delta p_r - 0.74 s_1
\]

\[- 0.07 \Delta s_{12} - 0.01 \rho p p - 0.00002 s_{91}. \tag{26}
\]

All three relations contain a tiny, but significant, trend effect which is not straightforward to interpret. It seems, however, likely that the linear trend effect in the relations is a proxy for some information not included in the analysis. For example, the small trend effect in (24) might very well account for a productivity differential between the two economies. In (25) the reunification trend might be a proxy for a change in the market’s reassessment of the riskiness of the nominal Dmk/$ rate. In (26), the trend together with the \(pp \) may imply that German inflation rate, in addition to following the US inflation rate, the short-term interest rate, and the change in the Dmk/$ rate, has adjusted in the long run to the deviation of relative prices from trend. Fig. 5 shows that the three polynomially cointegrating relations are very stationary.

The estimated \(\alpha \) coefficients show that relative prices and the US inflation rate adjust very significantly to all three cointegration relations, whereas the nominal exchange rate adjusts to the first two relations, though less significantly so. Of the two long-term rates, the US bond rate is not significantly adjusting (except with a tiny coefficient to the first relation) consistent with the test of a zero row in \(\alpha \) in Section 7.3, whereas the German bond rate is very significantly adjusting to the second relation. Of the two short term interest rate, the German rate is very significantly adjusting to all three relations, whereas the US rate is primarily adjusting to the first relation.

\(^8\) This is mostly because \(\Delta s_{12} \) has a much larger variance than \(\Delta \rho p p \).

\(^9\) Applying an autoregressive model to \(\Delta \rho p p \), produced a root of approximately 0.85–0.90, depending on the length of the lag structure. However, the AR model was not a good description of the time-series behavior of \(\Delta \rho p p \), and should therefore only be seen as indicative.

\(^{10}\) REH monetary models imply that the long-term real interest rate spread and \(\rho p p \) are separately \(I(0) \). By sharp contrast, the cointegrating relationship between these two variables is consistent with the monetary model under IKE. See Frydman et al. (2009).
Table 6 reports the weights with which the two (near) I(2) stochastic trends have affected the variables of the system. As the weights of the I(1) trends are complicated functions of all estimated matrices (see Section 3), they will not be reported. The discussion will, therefore, focus on the I(2) trends and how the estimated weights are helpful in understanding more fully the test results of the previous section.

We note that the first I(2) trend, essentially measuring the twice cumulated shocks to the bond spread and the German term spread, loads into pp and s12 with coefficients of the same sign, while not exactly the same magnitude. The coefficients to the interest rates are very close to zero. We interpret this I(2) trend as describing the long-term downward sloping trend visible in both relative prices and nominal exchange rates. The second I(2) trend, essentially measuring the twice cumulated shocks to the US short-term interest rate, loads primarily into s23 and into pp with a coefficient of opposite sign, reflecting the tendency of the nominal exchange rate to move away from relative prices for extended periods of time. It also loads into the remaining variables with coefficients which might be large enough to suggest some significant effects. Based on this, we can now get an expression for the (near) I(2) properties of the pp:

\[
pp - s_{12} = (1.556 - 2.432) \sum \epsilon_t + (-0.693 + 3.356) \sum \tilde{\epsilon}_t.
\]

This expression suggests that the real exchange rate is indeed near I(2) in the sense of being strongly influenced by the second I(2) trend. The fact that it could not be rejected as an I(1) process in Section 7.2, \(H_2 \), suggests that the loading −0.876 is not statistically significant from zero and that the loadings to the second stochastic trend have large standard errors, consistent with the high volatility characterizing exchange rate movements in currency markets. This volatility is also visible in the relatively larger loadings to the nominal exchange rate compared to relative prices. Also, the finding that the I(1) hypothesis was rejected for both s12, and pp, but not for ppp, suggests that the loadings 2.43 and 1.56 are both significant, whereas 0.876 is not.

The expression for the long-term bond spread is given by

\[
b_1 - b_2 = (0.008 - 0.000) \sum \epsilon_t + (0.091 - 0.084) \sum \tilde{\epsilon}_t.
\]

showing that the loadings to both I(2) trends are tiny and, as the testing of \(H_2 \) showed, not significant.

Finally, an expression for the short-term spread is given by

\[
s_1 - s_2 = (0.017 - 0.000) \sum \epsilon_t + (0.162 - 0.119) \sum \tilde{\epsilon}_t,
\]

showing that the loadings to the I(2) trends are tiny also in this case, but that the loadings to both trends are larger than for the bond spread, probably explaining why \(H_2 \) was almost rejected.

10. Conclusions

This paper has discussed a number of likelihood ratio tests in the I(2) model. Using these procedures we have been able to investigate the empirical regularities behind the long swings in the Dmk/$ rate. This has been done by structuring the data according to different levels of persistence using the I(2) model. We have argued that to ignore such trends when they are present in the data is likely to impede a full understanding of the data. Moreover, the I(2) framework enabled us to present some empirical regularities in characterizing the long swings properties of real and nominal exchange rates. The finding that the I(1) or near I(2) hypothesis cannot be rejected for these variables indicates a rejection of the monetary model under REH in favor of its IKE counterpart. The fact that price inflation was found to be ‘purely’ adjusting, whereas there was little evidence of long-run feedback on nominal exchange rates, is also in conflict with the assumptions of the REH models. In striking contrast, these results accord well with the IKE monetary model of currency swings, helping us to resolve one of the core anomalies in international macroeconomics, the PPP puzzle (Frydman et al., 2008, 2009). Thus, the common practice of not testing for double unit roots in the data may lead economists to draw erroneous inferences from their ‘statistical’ analyses.

From a more general point of view, we find that the general-to-specific approach of a cointegrated VAR model is potentially very important as a way of making abductive inference in economics (Hoover, 2006). This is because it allows us to systematically search for an econometric model that is as simple as possible (but not more so), without distorting some of the information in the data. Thus, this approach should allow us to ask whether the standard theory is too restrictive and, if so, what theoretical structure we should be looking for in explaining regularities in the data. Instead of leaving the investigation to the interplay between theory and the data, the specific-to-general approach imposes constraints according to the ‘favored’ model and is therefore likely to be detrimental to understanding the data properly from a theoretical and empirical perspective (see Juselius and Franchi, 2007).

Acknowledgement

We gratefully acknowledge detailed and valuable comments and suggestions from two anonymous referees and from the editor in charge, Peter Boswijk. Support from Center for Research in Econometric Analysis of Time Series, CREATEs, funded by the Danish National Research Foundation is gratefully acknowledged by the first author.

Appendix. Proof of Lemma 3

When discussing the asymptotic distribution of the estimator of \(\hat{\beta} = (\hat{\beta}', \hat{\theta}') = \rho(\tau', \tau_{01}', \tau_{02}') \), it is convenient to introduce the true value denoted by \(\beta^0 \), and normalize the parameter and the estimator so that \(\hat{\beta} \) is \(\beta(c \hat{\beta})^{-1} \).

\[
\begin{bmatrix}
\alpha & \alpha^s \\
0 & 0
\end{bmatrix}
\]
Then the restrictions on $\tilde{\beta}_i$ are not linear, but an expansion of $\tilde{\beta}_i$ around $\tilde{\beta}_0^0$ shows that:

$$\tilde{\beta}_i - \tilde{\beta}_0^0 = c_i (\hat{p}_i^0 - \tilde{p}_0^0) + O((\hat{p}_i - \tilde{p}_0^0)^2)$$

$$= \left(\begin{array}{c} p_{i1}^0 - \tilde{p}_0^0 \\ 0 \\ \end{array} \right) I_2$$

where we have used the expressions:

$$c_i = \left(\begin{array}{c} 0 \\ \tilde{p}_0^0 \\ \end{array} \right)$$

$$\tilde{p}_i = \left(\begin{array}{c} \tilde{p}_0^0 \\ 0 \\ \end{array} \right)$$

In the following we shall omit the superscript 0, given to indicate the true value.

We decompose $\tilde{\tau} = \tilde{\tau} + \tilde{\rho}_i \tilde{\beta}_i = \tilde{\rho}_i + \tilde{\eta} \tilde{\rho}_i$, and replace the variation independent parameters $(\rho, \tilde{\tau})$ by the variation independent parameters $(\beta, \tilde{\eta}, \rho)$. The likelihood function is denoted $\ell_T(\theta)$, and the score function with respect to ψ_i is therefore

$$\frac{\partial}{\partial \psi_i} \ell_T(\theta) = \sum_{t=1}^{T} \ell_t(x_{i,t-1}, p_{i1}, \ldots, p_{i,T}; \beta'; \beta_i)$$

$$+ \tilde{\rho}_i \kappa_{\psi_i} \sum_{t=1}^{T} \ell_t(x_{i,t-1}, \beta'; \beta_i)$$

The second term is always localised by the first, so we focus on the first. We find using $p_{i1} = p_{i1} + \rho_{i1} \beta_i$ and $\beta_i = \tilde{\tau} + \tilde{\rho}_i \beta_i$, that the (main) trend in $\beta_i x_i$ is $-\rho_{i1} (\tau' \tau)^{-1} \tau d_i = \nu_i d_i$, see (17). Then

$$H_i^f \left(\begin{array}{c} p_{i1} \\ \end{array} \right) = H_i^f \left(\begin{array}{c} 0 \\ \end{array} \right)$$

$$= \left(\begin{array}{c} \tilde{p}_0^0 \\ 0 \\ \end{array} \right)$$

$$+ \tilde{\rho}_i \kappa_{\psi_i} \sum_{t=1}^{T} \ell_t(x_{i,t-1}, \beta'; \beta_i)$$

$$(28)$$

say, where the terms are of the order $T^{3/2}$, T, and $T^{1/2}$ respectively, because the cumulated random walk in $\beta_i x_i$, dominates the first term, the second, d_t, is of the order of T and in the last term the process has been detrended so it is dominated by the random walk.

Because $\tilde{\beta}$ is identified, we have that $H_i^f \tilde{\beta}_i$ has full rank m_i, because if $\phi H_i^f \tilde{\beta}_i$ were zero, then $H_i \psi_i$ would be a linear combination of $\beta_i, i = 1, \ldots, T$, and $\tilde{\rho}_i + H_i(\phi \psi_i) \beta_i$ would satisfy the same restrictions as $\tilde{\beta}_i$. The assumption of identification then shows that $\phi = \beta_i$. This implies that also

$$\text{rank} \left(H_i^f \left(\begin{array}{c} p_{i1} \\ \end{array} \right) \right) = \text{rank} (M_{i2}, M_{i1}) = m_i$$

and we exploit this as follows. Let $\text{rank}(M_{i2}) = m_{i2}$, so $M_{i2} = v_i v_i'$, where v_i is $m_i \times m_{i2}$ and v_i is $s_i \times m_{i2}$ are of rank m_{i2}. Similarly, let $v_i M_{i1} = b_i v_i'$ be of rank m_{i1}; then the matrix $b_i v_i' M_{i1}$ has rank $m_{i1} = m_i - m_{i2} - m_{i3}$, as is seen from the display:

$$\left(\begin{array}{c} \tilde{v}_i' \\ \tilde{b}_i \tilde{v}_i' M_{i1} \\ \end{array} \right) (M_{i2}, M_{i1}) = \left(\begin{array}{c} \tilde{v}_i' M_{i2} \\ \tilde{b}_i \tilde{v}_i' M_{i2} \tilde{b}_i \tilde{v}_i' M_{i1} \\ \end{array} \right)$$

$$(29)$$

The asymptotic behavior of the various processes in (28) is summarized in

$$T^{-3/2} \bar{v}_i' M_{i2} \tilde{b}_i \tilde{v}_i' M_{i1} \rightarrow d \bar{v}_i' M_{i2} \tilde{b}_i' \tilde{v}_i' W(s) \Delta_{T} = \Omega_{i1}(u),$$

$$T^{-3/2} \bar{b}_i' \tilde{v}_i' M_{i1} \tilde{b}_i' \tilde{v}_i' M_{i1} \tilde{b}_i' \tilde{v}_i' W(s) \Rightarrow \Omega_{i}(u),$$

and we define $G_i(u) = (G_{i1}(u), G_{i2}(u), G_{i3}(u), G_{i4}(u))$, where $\Delta_{T} = \lim_{T \to \infty} T^{-3/2} \bar{v}_i' M_{i1} \tilde{b}_i' \tilde{v}_i' M_{i1}$ which is assumed to exist; that is, the broken linear trend breaks at a given fraction of the sample.

We now define the normalizing matrices

$$A_i^{-1} = \left(T^{-3/2} \bar{v}_i, T \bar{v}_i, T^{-1/2} \bar{v}_i, T^{-1/2} \bar{b}_i \right)'$$

and

$$A_i = \left(T^{-3/2} \bar{v}_i, T^{-1/2} \bar{v}_i, T^{-1/2} \bar{b}_i \right)'$$

and find that the triangular structure (29) implies that the limit of the normalized score function is

$$T^{-3/2} A_i^{-1} H_i^f \sum_{t=1}^{T} \left(\begin{array}{c} p_{i1} \\ \end{array} \right) (x_{i,t-1}, d_i) \ell_t^{-1} \alpha_i$$

$$(30)$$

Thus the normalized score function with respect to the parameters ψ_1, \ldots, ψ_i is asymptotically mixed Gaussian, because the processes $G_i(u)$ depend on $C_i W(u)$ and $\beta_i', C_i W(u)$, both of which are functions of $(\alpha_{i1}, \alpha_{i2}, W(u))$, see (7), and are therefore independent of $\beta_i' W(u)$.

The i, jth block of the asymptotic conditional variance is given by the $m_i \times m_j$ matrix

$$a_i^{-1} \alpha_i = \int_{0}^{1} G_i(u) G_i(u)' du.$$

(31)

Similarly, the main term of the information with respect to ψ_i is given by

$$a_i^{-1} \alpha_i H_i^f \sum_{t=1}^{T} \left(\begin{array}{c} x_{i,t-1} \\ d_i \\ \end{array} \right) \left(\begin{array}{c} x_{i,t-1} \\ d_i \\ \end{array} \right)' \left(\begin{array}{c} p_{i1} \\ 0 \\ \end{array} \right) H_i$$

and, normalized by $T^{-3/2} A_i^{-1}$ and $T^{-1/2} A_i$, the limit is given by (31). The asymptotic distribution of the estimator of ψ_i is found from the usual expansion of the likelihood function and is given by

$$(T^{-3/2} A_i^{-1} (\hat{\psi}_i - \psi_i)) \rightarrow d \left\{ a_i^{-1} \alpha_i \int_{0}^{1} G_i(u) G_i(u)' du \right\}^{-1} \times \left\{ \int_{0}^{1} G_i(dW) \Delta_{T}^{-1} \omega_i \right\}.$$

References

