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Abstract: We present a dynamic model of sequential information acquisition
by a heterogeneous committee. At each date agents decide whether to vote
to adopt one of two alternatives or continue to collect more information. The
process stops when a qualiÞed majority vote for an alternative. Three main
insights emerge from our analysis and match an array of stylized facts on com-
mittee decision making. First, majority rule is more fragile than super-majority
rules to the disproportionate inßuence of impatient committee members. Sec-
ond, more diverse preferences, more patient members, or more unanimous
decision voting rules lead to lengthier deliberation and more accurate deci-
sions. Last, balanced committees unanimously prefer to delegate deliberation
power to a moderate chairman rather than be governed by a rule such as una-
nimity.
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1. Introduction

Many committees spend time deliberating issues and gathering information before reach-
ing a decision or issuing a recommendation. Examples of such committees include juries,
boards of directors, standard-setting organizations, congressional and university commit-
tees, and government agencies such as the FDA or the EPA. This paper presents a simple
model of deliberation capturing some key features of committee decision processes.

We consider an environment in which committee members jointly decide, over time,
how much information to collect before making one of two possible decisions (hiring or
not hiring a candidate, adopting a new standard or sticking to the status quo, convicting
or acquitting a defendant). Information arrives continuously (and publicly) according to
a Weiner process. We allow agentsÕ preferences to be heterogeneous in two dimensions:
the urgency to reach a decision, i.e., agentsÕdiscount factors, and the appropriate standard
of evidence to apply in order to adopt one of the two decisions, namely, agentsÕ static
preferences over the two alternatives. The case of a homogeneous committee reduces to the
classic sequential sampling problem that has been studied in the statistics literature since
Wald (1947a, b). In this approach, an agent acquires information sequentially. At each
stage, the agent chooses whether to stop and take a decision, or to proceed to acquire
additional information, which is costly. The optimal procedure involves a sequential like-
lihood ratio test, whereby intermediate values of the likelihood ratio require obtaining a
new sample, while high (low) values of the likelihood ratio require stopping and taking
one (or the other) decision.

The starting point of our analysis (Proposition 1) is a derivation of an analogue to
the sequential sampling results for heterogeneous committees. We show that equilibria
are still characterized in terms of waiting thresholds. The committee obtains additional
information for intermediate values of the likelihood ratio, and takes decisions for high
(low) values of the likelihood ratio. This characterization allows us to compare institu-
tions (namely, deliberation protocols and voting rules). It also allows us to study the
effects of a committeeÕs composition, in terms of its membersÕ discount factors and static
preferencesÑon the length of deliberation, the accuracy of decisions, and the generated
welfare for the committee and for society at large.

In evaluating voting rules, we need to balance several considerations. We show (in
Proposition 2) that a weakness of majority rule is that deliberation can be excessively in-
ßuenced by impatient agents. Since impatient agents prefer quicker decisions, they can
be easily persuaded to change their votes. Under majority rule, it takes the change of
only one vote to alter the outcome. Therefore, in equilibrium, patient agents supporting
different alternatives cut short deliberations to capture any impatient member before she
changes sides. Because quick decisions are strategic complementsÑif the supporters of
one alternative expect the supporters of the other alternative to decide quickly, they will
decide quickly as wellÑ the mere presence of one impatient agent can cause the whole group to
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rush to a decision, even when all other agents are very patient. We call this phenomenon a hasty
equilibrium. This insight crucially depends on allowing for two dimensions of hetero-
geneity. Indeed, in one-dimensional static voting environments, no agent with extreme
preferences can inßuence the outcome under majority rule.

Super-majority rules, by comparison, are more robust against hasty decisions. Under
super-majority rules, more than one vote must change to alter the outcome. Deliberations
do not collapse unless the number of impatient agents is sufÞciently large (Proposition 3).
Moreover, because slow decisions are strategic substitutes, one very patient agent would
not cause the group to deliberate indeÞnitely unless unanimity is required. Compared
to majority rule, super-majority rules also tend to produce more accurate decisions and
longer deliberations (Proposition 4). Hence, even when the agents themselves, who bear more
of the delay costs, prefer majority rule, society at large, which beneÞts from a more accurate deci-
sion, may be better off with a super-majority rule.

An advantage of majority rule is that it always produces an outcome that is favored
by a majority. Indeed, under majority rule, if a majority of agents prefers a different alter-
native to the one adopted in equilibrium, it can simply adopt the one preferred. Another
advantage of majority rule is that all agents of the committee prefer it to stricter major-
ity requirements in symmetric environments where all agents are equally patient and the
static preferences for the two alternatives are balanced. Suppose that such a committee is
comprised of an odd number of individuals. Majority rule then generates outcomes that
would emerge from delegating all decisions to the most moderate member, with median
static preferences. Therefore, in such environments members of a committee would unani-
mously prefer to delegate deliberation power to a moderate chairman rather than be governed by a
deliberation rule such as unanimity(Proposition 5).

Super-majority rules have an important drawback. In an asymmetric environment, a
high majority requirement may allow a small group with extreme preferences to hold out
and force other members to accept an alternative that they do not like. This problem is
the most severe under unanimity rule. In that case, the deliberation outcome may be pre-
ferred by only one member; the rest of group may all prefer the other alternative but vote
for the inferior one to avoid costly delay (Proposition 6). Thus, while our results support
the use of super-majority rules in situations where agents have diverse time preferences,
they also warn against setting a very high majority requirement. In particular, requiring
unanimity does not always build consensus.

One way to combine some features of majority and super-majority rules is to have a
two-stage decision process. First, agents vote to end deliberation in a sequential process
similar to that of our benchmark setup. When deliberation comes to a halt, agents vote
simultaneously to select an alternative. We model the deliberation process with a thresh-
old rule kD such that deliberation ends as soon askD members of the committee vote to
end deliberation. Decision rules are analogously captured by a rule kd that describes the
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speciÞc qualiÞed majority required for reaching a decision after deliberation stops. We
show that in certain cases, decision rules are irrelevant, while deliberation rules always affect
the length of deliberation and accuracy of ultimate decisions(Proposition 8). This separation,
however, makes it impossible to have outcomes where agents vote against their static
preferences in order to avoid costly delays (Proposition 7).

Our results are relevant to the design of deliberative mechanisms and for understand-
ing the dynamics of information collection in a variety of collective decision processes
such as R&D, hiring decisions, FDA drug approval, and so on. In Section 8 we discuss in
more detail two applications: standard-setting organizations along with juries. Standard-
setting processes Þt our benchmark setup in which deliberation and decision making are
intertwinedÑdecisions are sequential and are often of the form of ÒcontinueÓ or Òtake a
decisionÓ (approve or not). The case of juries Þts our two-stage deliberation setting. Ju-
ries are an interesting application for our model for three main reasons. First, in juries,
the deliberation process is clear-cut and circumscribed: there is a well-deÞned beginning
and end of deliberation, the time it takes the jury to deliberate is measurable, and one
single verdict is the typical outcome of such deliberation. Second, the jury setting allows
us to contrast our analysis with much of the extant body of literature on deliberation that
has focused predominantly on the jury context. Third, the empirical literature has docu-
mented some patterns of deliberation in juries that can be explained with our model.

Related Literature

In economics, the past two decades have delivered a rich collection of work on committee
decision making; see Li and Suen (2009) for an extended survey. Our paper ties directly
to several sets of studies.

There is a literature on committee decision making that focuses on how private infor-
mation of individual agents is aggregated under alternative voting rules. A key Þnding
in this literature is that unanimity leads to less informative outcomes than majority rule. 1

We identify additional disadvantages of majority rule, but our result that unanimity can
lead to more accurate outcomes than majority rules contrasts with these results.

Our paper is also related to recent contributions that adopt a collective search ap-
proach (Albrecht, Anderson, and Vroman 2010; Compte and Jehiel 2010; 2011; Moldovanu
and Shi 2013). Of these, the most related is the paper of Albrecht, Anderson, and Vroman
(2010). They Þnd that in a heterogeneous search committee, each committee member will
apply a lower acceptance standard than what she would have were she the sole decision

1See Feddersen and Pesendorfer (1998). Persico (2004) also obtains this result when allowing for private
information collection prior to voting. Austen-Smith and Feddersen (2006) consider a round of cheap-talk
communication before voting and also show that unanimity leads to less communication and poorer infor-
mation aggregation. Gerardi and Yariv (2007, 2008) depart from these papers by studying general commu-
nication protocols. They show that the set of equilibrium outcomes is invariant to the voting rules, as long
as they are non-unanimous. In fact, unanimous voting rules generate a subset of equilibrium outcomes.
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maker. This effect is also present in our model. However, in their model, in contrast with
ours, having one committee member who is willing to accept proposals very quickly can-
not cause the rest of the committee to stop searching entirely. The key difference is that,
in the case of search, independent draws of alternatives appear every period, and the
groupÕs decision is whether to adopt that alternative or to continue with search. In our
setup, alternatives are Þxed but new information about the existing alternatives appears
over time, and the groupÕs decision is when to stop collecting evidence and decide which
alternative to adopt. The relative merits of different alternatives evolve as information
arrives: the leading alternative is expected to still lead within a short interval of time, but
has a possibility of being overtaken by another alternative after sufÞcient information has
been accumulated over a longer interval. 2

In our model a majority may decide to act early to prevent members from changing
side. A similar result is obtained by Strulovici (2010) in the context of dynamic collective
experimentation. In his model a new policy may affect different voters differently. He
shows that, in equilibrium, a group that is pessimistic about the new policy may vote to
end the experiment prematurely to prevent the new policy from gaining more supporters.

From a technical perspective, the starting point of our analysis is Wald (1947a, 1947b),
who pioneered the study of sequential testing, and provided a characterization of the op-
timal test as a sequential likelihood ratio test. Dvoretsky, Keifer, and Wolfowitz (1953),
Mikhalevich (1958), and Shiryaev (1967) gave an early treatment of the hypothesis testing
problem in continuous time. 3 Two recent papers also apply the framework of sequential
testing. Henry and Ottaviani (2014) study of the approval process when a Þrm conduct-
ing clinical trials needs approval from a regulator such as the FDA. They allow for the
possibility that the Þrm may misrepresent the evidence and show that it may not be opti-
mal to forbid such misrepresentation. Gul and Pesendorfer (2012) study the competition
between two political parties to provide public information that may inßuence votersÕ
choices. In equilibrium, each party chooses a threshold and stops providing informa-
tion once the voterÕs belief is less favorable than that threshold. This is similar to our
model under unanimity rule. However, in their model, since the parties have opposite

2Messner and Polborn (2012) study a two-period model where voters receive information over time
about the desirability of an irreversible decision. The main message of that paper is that the optimal voting
rule requires a super-majority. Bognar, Meyer-ter-Vehn, and Smith (2015) also study a model of dynamic
deliberation, but with very different ingredients. In their model, jurors have private information about a
payoff-relevant state. They assume that jurors sequentially exchange coarse messages. That model pro-
duces many equilibria that can be ranked in terms of generated welfare. When there is no discounting, they
show that longer conversations are better. A related paper is that of Eso and Fong (2008), who study a dy-
namic cheap talk model with multiple senders, where the receiver can choose when to make her decision.
They show that when the senders are all informed of the state of nature, a perfect Bayesian equilibrium
exists with instantaneous, full revelation, regardless of the size and direction of the sendersÕ biases. Wil-
son (2014) considers exogenous costs for both sending messages and receiving them, and illustrates the
dependence of effective communication on agentsÕ quality of information and messaging costs.

3See also De Groot (1970) for a modern exposition, and Moscarini and Smith (2001) for an extension that
allows for richer sampling strategies.
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policy preference, their choices are always strategic substitutesÑif one party stops later,
the other party will stop earlier. In contrast, in our model, because the voters share a
common interest conditional on the true state, their one-sided best-response functions
are non-monotone.

2. The Model

A group of 2m " 1 agents chooses between two alternatives,↵ and �.4 The payoff from
each alternative depends on the underlying state ! # { A,B} . In state A, agent iÕs payoff
from ↵ is 1, and his payoff from � is 0. In state B, agent iÕs payoff from↵ is 0, and his
payoff from � is e

vi . Thus, all agents prefer action ↵ in state A and action � in state B,
but agents differ in the intensity of this preference, their static preferences, and vi # R
is a measure of the intensity of agent iÕs preference for� relative to ↵. AgentsÕ static
preferences are heterogenous, with v1 < . . . < v2m! 1. The median static preference is
vm. Agents do not observe the state but share a common prior belief. It is convenient
to represent agentsÕ beliefs by the log ratio of the probabilities of the two states. We let
✓0 = log(Pr[! = A]/Pr[! = B]) represent the initial belief. With this parameterization, the
probability of state A is given by e

!
/(1 + e

!
) when the belief is ✓. The immediate expected

payoff from choosing ↵ is higher than that from choosing � for agent i if and only if ✓ $ vi .

Time is continuous on [0,%). At every instant t, each agent independently votes for
↵, �, or neither. We initially focus on a simple class of decision rules. Under decision
rule k # { m,m + 1, . . . , 2m " 1} , an alternative is adopted at time t if it receives k votes
or more. Voting continues until either ↵ or � receive sufÞcient votes. Voting for neither
alternative is effectively a vote in favor of continuing to gather information. Voting for
one alternative is also a vote in favor of stopping information acquisition. 5 We call rule
k = m majority rule, k > m super-majority rule, and k = 2m " 1 unanimity rule. The
usage is natural in contexts where alternatives are treated symmetrically, and deliberation
continues until an alternative has received enough support. In Section 7 we consider an
alternative structure by modeling a two-stage deliberation process that separates voting
on information gathering from voting on the Þnal decision.

Each agenti discounts the future at a rate ri . If an alternative is chosen at time t, then
agent iÕs payoff is discounted by the factore! r i t . In general, agents areheterogeneous both
in their static preferencesvi and in their time preferencesri .6

4The assumption of an odd number of agents is used only when we consider majority rule.
5Throughout the paper, majority rule or super-majority rule refer to an ÒabsoluteÓ rule. Under an abso-

lute rule, abstention is treated as a vote to support neither alternative. In contrast, a ÒsimpleÓ rule discards
abstention votes in the tally. This distinction is based on Riker (1982). Our results would not change under
the following alternative rule: each agent can choose to support ↵, support �, delay, or abstain; an alter-
native is adopted if the fraction of votes, excluding abstentions, passes a threshold. Because there is no
private information in this model, there is no strategic advantage to abstention relative to voting for delay
(Feddersen and Pesendorfer 1996).

6While our setup uses heterogeneous discount rates to model different preferences over how quickly to
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Public information arrives continuously as long as deliberation has not stopped and
an alternative has been chosen. The arrival of information is represented by a Wiener
processdS that has a positive drift µ and an instantaneous variance ⇢2 if the state is A, or
drift " µ and variance ⇢2 if the state is B. For any time t > 0, the accumulated evidenceSt

is a sufÞcient statistic for all the information that has arrived before t. The log-likelihood
ratio of observing St = s under the two states is

log

h((s " µ)/⇢)

h((s+ µ)/⇢)

=

2µs

⇢

2
,

where h(á) is the standard normal density function. Hence, a higher observed value of the
accumulated evidence St is stronger evidence in favor of state A. The log posterior prob-
ability ratio is given by the sum of the log prior probability ratio and the log-likelihood
ratio. So, if we let S"

t = 2µSt/⇢
2, the common belief of the group at time t is given by:

✓t = ✓0 + S

"
t .

Denote µ

" & 2µ

2
/⇢

2. Then, agentsÕ common belief is given by a Wiener process, with drift
µ

" and instantaneous variance2µ" under state A, and drift " µ

" and variance 2µ

" under state
B. A higher value of µ

" (higher µ or lower ⇢) indicates a more informative deliberative
process.

When m = 1, decisions correspond to an individual. This is the classic case analyzed
in the literature on sequential analysis that started with Wald (1947a, b). 7 In this case,
predictions are unique and can be characterized as follows.

Proposition 0. When agenti is the only agent in the group (i.e.,m = 1), a unique equilibrium
exists and is characterized by two thresholdsg

#
i < G

#
i such that:

¥ the agent stops information collection and chooses↵ whenever✓t $ G

#
i ;

¥ the agent stops information collection and chooses� whenever✓t < g

#
i ;

¥ the agent continues collecting information whenever✓t # [g

#
i , G

#
i ).

When m > 1, in principle, an agentÕs decision at timet could be a function of the entire
sample path of St , her own decisions, and other agentsÕ decisions before timet. However,
the difference between the expected payoffs of the two decisions ↵ and � depends solely

act, a very similar model can be constructed with explicit information acquisition costs. Suppose that, for
agent i the cost of information collection is �dt for a time interval of length dt, and the payoffs from ↵ and �
are�i and �i evi , respectively. Agents with low values of �i are low-stake voters: their primary concern is to
reduce the explicit information collection cost. In such an alternative setup, low-stake agents play a similar
role to that played by impatient agents in our model.

7Wald studied a discrete time process. The continuous time case was studied by Dvoretsky et al. (1953).
See also Mikhalevich (1958) and Shiryaev (1967).
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on the current belief ✓t and is strictly increasing in it. We focus on equilibria in which
agents adopt Markov cutoff strategies (much like the optimal policies characterized by
Wald for an individual decision maker). Formally, agent iÕs strategy�i is represented by
a pair of cutoffs (gi , Gi ), with gi ' Gi . Strategy (gi , Gi ) means voting for ↵ when ✓t $ Gi ,
voting for � when ✓t < gi , and abstaining when ✓t # [gi , Gi ).8

For any strategy proÞle � = (�1, . . . , �2m! 1), let G[k]
(�) denote the k-th smallest Gi

in �, and let g[k]
(�) denote the k-th largest gi in �. We call the interval (g

[k]
(�), G

[k]
(�))

the waiting region, because the group does not make a decision as long as the belief stays
within this interval. The width of the waiting region, G

[k]
(�) " g

[k]
(�), is an indicator of

the expected time to make a decision. Note, however, that a wider waiting region does
not necessarily mean that the group always waits longer, unless two waiting regions are
nested(i.e., one waiting region contains the other). If two waiting regions are nested, de-
cisions reached with the larger waiting region are more accuratebecause each alternative
would be adopted when the probability of its corresponding state is higher.

Let ui (g,G | ✓) represent the payoff to agent i when the belief is ✓ and the waiting
region is (g,G). If ✓ $ G, then ↵ is adopted and the expected payoff is

ui (g,G | ✓) =
e

!

1 + e

!
.

If ✓ < g, then � is adopted and the expected payoff is

ui (g,G | ✓) =
e

vi

1 + e

!
.

For ✓ # [g,G), the payoff function satisÞes

ui (g,G | ✓) = e

! r i dtE [ui (g,G | ✓ + dS

"
)] .

BecausedS" is a diffusion process with expected drift µ

"
(e

! " 1)/(1+e

!
) and instantaneous

variance 2µ

", we can use ItoÕs lemma to derive a differential equation in ui . Solving this
differential equation and imposing the value-matching condition at the two boundaries
of the waiting region, we obtain:

ui (g,G | ✓) =
e

!

1 + e

!
 i (g,G | ✓) +

e

vi

1 + e

!
 i (g,G | ✓),

8Of course, at a formal level, our analysis can be thought of as static: Individuals can commit to thresh-
olds, and then go through the voting process.
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where

 i (g,G | ✓) =
e

! R1(! ! g) " e

! R2(! ! g)

e

! R1(G! g) " e

! R2(G! g)
,

 i (g,G | ✓) =
e

! R1(G! ! ) " e

! R2(G! ! )

e

! R1(G! g) " e

! R2(G! g)
,

with

R1 =

1

2

!
1 "

"

1 +

4ri

µ

"

#
, R2 =

1

2

!
1 +

"

1 +

4ri

µ

"

#
.

Note that R2 > 1, R1 < 0, and R1 + R2 = 1. The values of R1 and R2 depend on i, but we
omit this dependence in the notation to avoid clutter. 9

The two functions  i and  i can be given a statistical interpretation (Cox and Miller
1965). When✓ # (g,G), agent iÕs payoff depends on which threshold is reached Þrst and
on the length of time it takes to reach it. The function  i (g,G | ✓) provides the proba-
bility of adopting ↵ in state A when the current belief is ✓, times the expected discount
factor conditional on the belief reaching the threshold G before reaching g in state A. The
function  i can be interpreted analogously.

DeÞnition 1. Let (ĝ, ˆG) = (g

[k]
(�), G

[k]
(�)). A strategy proÞle� is an equilibrium under deci-

sion rulek if the following conditions are satisÞed for any agenti:

1. For any belief✓ and any strategy�"
i ,

ui (ĝ,
ˆ

G | ✓) $ ui (g
[k]
(�

"
i , �! i ), G

[k]
(�

"
i , �! i ) | ✓).

2. (a)Gi > (<)

ˆ

G if @ui/@G|(ĝ,Ĝ; ! =Ĝ) > (<) 0;
(b) gi > (<) ĝ if @ui/@g|(ĝ,Ĝ; ! =ĝ) > (<) 0.

Condition 1 of DeÞnition 1 is the standard Nash equilibrium requirement. Condition
2 says that agent i does not vote for an alternative at the threshold if her marginal gain
from extending the threshold is positive, and, conversely, that she votes for an alternative
before the belief reaches the threshold for that alternative if her marginal gain from reduc-
ing the threshold is positive. Note that as long as the decision rule k is not the unanimity
rule, for any pair of thresholds (g,G), it would be a Nash equilibrium in our model for
all agents to adopt the same strategy (g,G), because no agent could unilaterally change
the waiting region. Condition 2 rules out trivial equilibria that commonly arise in voting
games because of the use of weakly dominated strategies, e.g. ones involving all agents
voting unanimously for one alternative regardless of beliefs.

9Note that R1 and R2 are homogeneous of degree0 in ri /µ". In principle, we could therefore carry the
analysis using discount factors normalized by µ". We maintain our notation for transparency.
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3. Best Responses in Stopping Decisions

This section covers some of the basic features of best responses in our setting. The results
underlie our equilibrium characterization in later sections. While the analysis here con-
stitutes an important preliminary step, some of which may be of independent interest,
it is more technical in nature. A reader interested only in the qualitative insights of our
analysis may skip this section.

In the classic individual optimal-stopping problem, an agent i chooses(gi , Gi ) to max-
imize ui (g,G | ✓). The group decision model differs in that the inßuence of each agent
is constrained by the cutoffs of other agents. Indeed, in terms of adopting ↵, there are
three possible cases to consider for agenti: (i) The posterior belief exceedsG[k]

(�! i ). In
this case, there is ak-majority of other agents favoring the adoption of ↵ immediately and
agent i has no impact on the decision. (ii) The posterior belief is lower than G

[k! 1]
(�! i ),

so that fewer than k " 1 other agents agree to adopt↵. In this case, the agent cannot force
the adoption of ↵. (iii) The posterior belief is between G

[k! 1]
(�! i ) and G

[k]
(�! i ). That is,

exactly k " 1 other agents want to adopt ↵ immediately. In this case agent i can affect the
stopping decision, i.e., she may be pivotal. Heterogeneity implies that agents disagree on
their ideal thresholds for stopping deliberation, and therefore, the identity of the pivotal
agent depends on the posterior. From the perspective of the agent, her problem is a con-
strained version of the single-person problem, where she takes as given the fact that there
is a region where she cannot stop information collection.

We say that agent iÕsspan of controlover the upper threshold is the interval

I

G
(�! i ) =

$
G

[k! 1]
(�! i ), G

[k]
(�! i )

%
.

Analogously, we deÞne I

g
(�! i ) = [g

[k]
(�! i ), g

[k! 1]
(�! i )] as agent iÕs span of control over

the lower threshold. Then, Condition 1 of the equilibrium deÞnition is equivalent to
requiring that (g

[k]
(�), G

[k]
(�)) be a solution to the following constrained maximization

problem for each agent i and for every belief ✓:

max

g,G
ui (g,G | ✓) subject to (g,G) # I

g
(�! i ) ( I

G
(�! i ). (1)

We proceed as follows. We Þrst study a one-sided stopping problem in which an agent
takes one of the stopping boundaries as Þxed and chooses the other stopping boundary.
We show that the corresponding best responses are well behaved. We then use the solu-
tion to this one-sided problem to characterize the solution to the constrained two-sided
stopping problem (1). Intuitively, when contemplating voting in favor of, say, the ↵ alter-
native, a committee member has to consider the circumstances under which the � alterna-
tive will be selected, which are determined in equilibrium. In that respect, the committee
member uses a one-sided best response, subject to the constraints imposed by her span of
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control.

We Þrst describe two important consequences of a change in one stopping boundary
on an agentÕs utility, holding the other stopping boundary Þxed:

Lemma 1. For ✓ # (g,G), the following properties hold for any agenti:

1. Dynamic consistency: The signs of@ui/@G and@ui/@g do not depend on✓.

2. Single crossing: (a) If@ui/@G $ 0 atG"
> G, then@ui/@G > 0 atG (holdingg constant).

(b) If @ui/@g ' 0 at g"
< g, then@ui/@g < 0 at g (holdingG constant).

The partial derivative of ui with respect to a threshold reßects the trade-off between
the cost of delay and the value of additional information. Part 1 of Lemma 1 says that this
trade-off is dynamically consistent: if an agent prefers to extend a threshold when her
belief reaches it, she prefers to extend this threshold before reaching it. Part 2 of Lemma
1 says thatui is single-peaked in each threshold, holding the other constant. Intuitively, if
an agent prefers waiting to selecting ↵ at a later threshold G

", she strictly prefers waiting
to selecting ↵ at an earlier threshold G, where the case for↵ is weaker.

We can now turn to the characterization of one-sided best responses. For any agent i,
denote by �i (G) the lower best-response function for agent i, which gives, for any Þxed G,
the optimal lower cutoff g that maximizes ui (g,G | ✓) subject to g ' G. The dynamic con-
sistency and single-crossing properties of Lemma 1 guarantee that �i (G) is well deÞned
and is independent of the current belief ✓. Similarly, the upper best-response function
�i (g) is deÞned as the optimal upper cutoff G that maximizes ui (g,G | ✓) subject toG $ g.
Recall that g#

i and G

#
i are the optimal cutoffs for agent i when she can choose both thresh-

olds. The point (g#
i , G

#
i ) must be a Þxed point of (�i ,�i ).

Lemma 2. The following properties hold for any agenti:

1. (a)�i (g) is continuous everywhere and is twice differentiable except atg = vi , with �i (g) >

g if g < vi and�i (g) = g otherwise.
(b) �i (G) is continuous everywhere and is twice differentiable except atG = vi , with
�i (G) < G if G > vi and�i (G) = G otherwise.

2. (a) ForG > vi , �
""
i (G) > 0, �"

i (G) < 1, and�i (G) reaches a minimum whenG = G

#
i and

goes to% asG goes to%.
(b) Forg < vi , �""

i (g) < 0, �"
i (g) < 1, and�i (g) reaches a maximum wheng = g

#
i and goes

to "% asg goes to"% .

3. (a) For anyG, �i (G) increases invi and increases inri , with limvi $!% �i (G) = "% and
limr i $% G " �i (G) = 0.
(b) For anyg, �i (g) increases invi and decreases inri , with limvi $% �i (g) = % and
limr i $% �i (g) " g = 0.
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Figure 1. The upper best-response function! i (g) is increasing forg < g#
i , decreasing forg # (g#

i , vi ), and
coincides with the 45-degree line forg > vi . The two best-response functions partition the space into four
regions. The arrows associated with each region show that agentiÕs utility increases if the cutoff moves in
the indicated direction. This Þgure is drawn using the parametersvi = 0 , ri = 0 .039, andµ" = 0 .1.

Figure 1 depicts a typical pair of lower and upper best-response functions �i and �i .
We focus on the properties of �i in the following discussion; the properties of �i are anal-
ogous.

If the threshold G for adopting ↵ is set below vi , there is no point in delaying the
adoption of �, as agenti would still prefer � to ↵ when her belief reaches the threshold for
adopting ↵. Thus, �i (G) = G. By contrast, if G > vi , agent i strictly prefers ↵ to � when
her belief is at G. Hence, when her belief is sufÞciently close to G, even an extremely
impatient agent i will prefer delaying the decision �, which, at this belief is the ÒwrongÓ
decision for her, in the hope that the belief will reach G and ↵ will be chosen instead.
Thus, �i (G) < G. Note that �i (G) is continuous at G = vi . When G is just above vi , the
difference in expected payoff between ↵ and � is very small at G. Hence, agent i gains
little from delaying the adoption of �.

Part 2 of Lemma 2 describes agentiÕs best response whenG > vi . Some of these prop-
erties are technical, but two features are of economic interest. First is the non-monotonicity
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of �i (G). Intuitively, ↵ is chosen Òtoo earlyÓ whenG < G

#
i (the unconstrained optimal cut-

off), and is chosen Òtoo lateÓ whenG > G

#
i . In either case, the agent responds by adopting

� earlier. The possibility that a loss of control (over the upper boundary) may reduce the
incentive to obtain information is discussed in Albrecht, Anderson, and Vroman (2010) in
the context of a collective search model, and by Strulovici (2010) in a two-armed-bandit
experiment setting. The non-monotonicity of �i implies there is a strategic difference be-
tween too much and too little waiting. Quick decisions are strategic complements; slow
decisions are strategic substitutes. In other words, excessive deliberation is self-limiting,
while rushing to a decision is self-reinforcing.

The second feature of economic interest is that �i (G) is unbounded from above. In
particular, it is possible that �i (G) > vi when G is sufÞciently large. An agent who prefers
↵ to � may nevertheless vote to adopt � immediately if she anticipates that she would
have to wait for a very long time for the group to adopt ↵.

Part 3 of Lemma 2 describes how �i varies with vi and ri . In terms of Figure 1, an
increase in vi would shift both �i and �i in the north-east direction, causing agent i to
adopt � earlier and ↵ later. An increase in ri ÒbendsÓ�i and �i toward the 45-degree
line, which prompts agent i to adopt both ↵ and � earlier. As agent i becomes extremely
impatient, the lower best-response threshold becomes arbitrarily close to the upper best-
response threshold.

Let IG
(�! i ) = [Gi , Gi ] and I

g
(�! i ) = [g

i
, gi ]. Given the single-crossing property (Lemma

1), ĝ is optimal in [g

i
, gi ] for any belief ✓ given ˆ

G only if it satisÞes:

ĝ

&
''(

'')

$ �i (
ˆ

G) if ĝ = g

i
,

= �i (
ˆ

G) if ĝ # (g

i
, gi ),

' �i (
ˆ

G) if ĝ = gi .

(2)

Similarly, ˆ

G is optimal in [Gi , Gi ] for any belief ✓ given ĝ only if it satisÞes:

ˆ

G

&
''(

'')

$ �i (ĝ) if ˆ

G = Gi ,

= �i (ĝ) if ˆ

G # (Gi , Gi ),

' �i (ĝ) if ˆ

G = Gi .

(3)

The following lemma shows that these conditions are also sufÞcient; that is, they char-
acterize Condition 1 of our equilibrium deÞnition and therefore provide the connection
between one-sided best responses and the equilibria of our model.

Lemma 3. A pair of thresholds(ĝ, ˆG), with ĝ <

ˆ

G, solves the constrained optimization problem
(1) for all beliefs✓ if and only if it satisÞes conditions (2) and (3).

Lemma 3 plays a crucial role in our analysis. Despite the fact that dynamic consistency
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holds for one-sided preferences, dynamic consistency does not generally hold when both
thresholds change at the same time. An agent may prefer waiting region (g,G) to (g

"
, G

"
)

at some belief ✓, but have the opposite preference at some other belief ✓". Nevertheless,
Lemma 3 shows that a solution to the constrained optimization problem (1) for all ✓ ex-
ists. Furthermore, it reduces our original two-sided collective stopping problem, which
is difÞcult to solve directly, into two readily solvable one-sided problems. In the proof
of Lemma 3, we use part 2 of Lemma 2 to establish that only one pair of cutoffs in the
constraint set satisÞes both (2) and (3). Because (2) and (3) are necessary for constrained
maximization, this unique cutoff pair must be optimal in the constraint set. 10

4. Equilibrium Analysis

Given decision rule k, deÞne the lower pivotal best-response function�piv (G; k) to be the
k-th largest �i (G) for each G. Thus, in a one-sided stopping problem, where ↵ is adopted
at G, there arek agents who support � when the belief reaches�piv (G; k). Similarly, deÞne
the upper pivotal best-response function �piv (g; k) to be the k-th smallest �i (g) for each
g. Notice that these do not necessarily correspond to cutoffs any of the agents would
use if they were deciding on their own. In what follows, we sometimes suppress the
argument k when doing so does not cause confusion. If the static preferences vi are all
the same and agents only differ in their discount factors ri , then every k is associated
with a unique pivotal agent for both thresholds: this is the k-th most impatient agent. If
the discount factors ri are all the same and agents only differ in their static preferences
vi then, as we will see, there are different pivotal agents for the two thresholds: these are
the agents with the k-th lowest and the k-th highest static preferences. More generally,
however, when agents are heterogeneous in both dimensions, determining the identity
of the pivotal agents is not so simple. Furthermore, because individual best-response
functions may cross if agents have different time preferences, the identity of the pivotal
agent who supports � may change asG changes. See Figure 2 for an illustration.

The following proposition establishes some basic properties of equilibrium.

Proposition 1. For any decision rulek, any (ĝ, ˆG) is an equilibrium outcome of the deliberation
game if and only if it is a Þxed point of(�piv ,�piv ) and ĝ <

ˆ

G. An equilibrium of the deliberation
game exists and the equilibrium waiting region must be non-degenerate. When there are multiple
equilibria, the equilibrium waiting regions are nested. Equilibrium is unique if the decision rule
requires unanimity or if there is a single dimension of heterogeneity.

It is obvious that any equilibrium cutoffs must be a Þxed point of the pivotal best-
response functions. SufÞciency follows from Lemma 3: if (ĝ,

ˆ

G) is an unequal Þxed point

10As the utility function ui is not quasi-concave in cutoffs, the Kuhn-Tucker conditions in general are not
sufÞcient for optimality in an arbitrary convex constraint set.
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Figure 2. The bold line shows the lower pivotal best-response function when there are three agents and
when the decision rule is majority rule. ForG < v2, �piv coincides with the 45-degree line. For ÞxedG ,
the median agent (agent 2) is pivotal in the decision to adopt� if G # (v2, G"). Agent 1 is more impatient
than others; he would prefer to adopt� earlier than agent 2 (but later than agent 3) ifG # (G", G""). For
G > G"", agent 1 prefers to adopt� the earliest and agent 3 becomes pivotal. In this Þgure,(v1, v2, v3) =
(" 0.6, 0, 0.6), (r1, r2, r3) = (0 .6, 0.039, 0.039), andµ" = 0 .1.

of (�piv ,�piv ), i.e., ĝ <

ˆ

G, then the strategy proÞle � where, for each i,

�i = (�i (
ˆ

G),�i (ĝ)),

satisÞes (2) and (3). Under majority rule, (vm , vm) is a Þxed point of (�piv ,�piv ) but not
an equilibrium, because agent m can gain by waiting a little before adopting one of the
alternatives.

Multiplicity of Equilibria. Multiple equilibria can arise for non-unanimous deci-
sion rules when there is heterogeneity in both dimensions. Figure 3 provides an example.
Thus, expectations can play an important role in deliberations. Agents may decide slowly
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Figure 3. Multiple equilibria exist whenvm+1 " vm is small. The hasty equilibrium isP1 in this Þgure;
there are two other more patient equilibria,P2 andP3. The Þgure is drawn using the same parameters as in
Figure 4(c), but withvm+1 " vm = 0 .4 instead of0.6. Whenvm+1 " vm becomes larger, the best-response
functions�m+1 and! m are pulled apart, and eventually do not intersect. Then, the hasty equilibriumP1
remains the only equilibrium.

if they expect others are taking their time, but they may also rush to a decision to preempt
others from reaching a different decision in a hurry (a phenomenon we call hasty equilib-
rium). We discuss these types of equilibria in detail and return to the issue of multiplicity
in the next section. When there are multiple equilibria, the equilibrium waiting regions
are nested; that is, themost patientequilibrium waiting region contains all other equilib-
rium waiting regions while the least patientequilibrium waiting region is contained in all
others.

Moderation in Committees with Homogeneous Time Preferences. It is useful to
point out a feature of equilibrium when all agents have the same time preference. In this
case, recalling that v1 < . . . < v2m! 1, it can be shown that the equilibrium waiting region
(ĝ,

ˆ

G) under decision rule k is the same as the equilibrium waiting region under unanim-
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ity rule for a two-agent group consisting of agents 2m " k and k. Furthermore, ĝ $ g

#
2m! k

and ˆ

G ' G

#
k , with equality if and only if k = m. Because one-sided best-response func-

tions do not cross when agents have the same discount rate, agent2m " k is pivotal for
adopting �, while agent k is pivotal for ↵. The exact intensity of the static preferences of
the remaining agents do not matter for the determination of the equilibrium. This also
means that, in the case of identical time preferences, under majority rule, the equilibrium
waiting region coincides with the optimal waiting region for the median agent. Under
super-majority rule, the pivotal agent for ↵ (i.e., agent k) adopts ↵ before reaching the
point that she deems optimal. Recall that agent k has a stronger preference for � than
agent 2m " k does. If agent k were to make the decision alone, she would adopt ↵ only
when the belief is sufÞciently strong to reach G

#
k . The fact that ˆ

G < G

#
k means that group

decision-making leads to a moderation effect: the two pivotal agents choose thresholds
that are less extreme than those they would choose were they in full control of the delib-
eration process. This follows from strategic substitution. Because agent 2m " k prefers
to adopt � later than agent k does, agentkÕs continuation value from waiting is lowered,
and she accommodates agent2m " k by adopting ↵ earlier.11

5. The Drawbacks of Majority Rule

In our deliberation process, agents are making two related decisions: which alternative
to adopt, and how long to wait. The static preference vi is related to the Þrst decision,
and the time preference ri is related to the second. When there is two-dimensional het-
erogeneity, the median voter theorem does not apply; that is, how long the group waits
does not depend only on the median discount rate. Because quick decisions are strategic
complements, the presence of an impatient agent may cause other agents to stop deliber-
ations early. This, together with the fact that under majority rule it takes only one vote
to change the outcome from one alternative to another, implies that the most impatient
agent tends to have a disproportionate inßuence on the length of collective deliberations.
This is a potential drawback of majority rule and a useful illustration of the consequences
of two-dimensional heterogeneity.

Figure 4 illustrates how the presence of an impatient agent affects equilibrium out-
comes. Agent 1 becomes increasingly impatient across the three panels. Despite having
a weaker preference for � than other agents, agent1 is willing to adopt decision � before
the other agents do as r1 increases. He becomes pivotal for � when r1 increases from
panel (a) to panel (b) of Figure 4. Agent 2 responds by stopping earlier to adopt ↵, be-
cause she expects the impatient agent would stop early to adopt �. The waiting region of
equilibrium P2 is narrower than that of equilibrium P1. One may think of the impatient

11When agents have different time preferences, we can no longer identify the pivotal agents based on
their static preferences alone. Nevertheless, a generalized form of this moderation effect still holds. In any
equilibrium under decision rule k, the lower equilibrium threshold is higher than the k-th highest g!

i and
the upper equilibrium threshold is lower than the k-th lowest G!

i .
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agent 1 as a Òswing voter.Ó While he prefers↵, he is willing to settle for � as long as the
evidence swings a bit in favor of �. His vote, therefore, easily switches between ↵ and �.
Hence, both agent2, who prefers ↵, and agent 3, who prefers �, have an incentive to stop
deliberations early to prevent agent 1 from switching sides. These effects are magniÞed
in equilibrium through strategic complementarity.

In panel (b) of Figure 4, agent 1 is both more impatient and has a stronger prefer-
ence for↵ than the other agents. Nevertheless, he continues to inßuence the deliberation
outcome as r1 increases further. In panel (c), �1 approaches the 45-degree line, and the
equilibrium P3 is near (vm , vm). In this equilibrium, although the impatient agent 1 has
a stronger preference for ↵ than other agents, he votes for � as soon as the belief drops
slightly below the threshold for ↵ to avoid further delay. In contrast, although agent 2 is
patient, she votes for ↵ as soon as the belief goes slightly above her static preference. The
value of waiting is low for her because she is almost indifferent between ↵ and � at the
belief under which � is adopted.

In Figure 4 there are only three agents, but the same logic applies regardless of the size
of the group and their preferences.

Proposition 2. Under majority rule, there is an equilibrium in which deliberation ends arbitrar-
ily quickly when one agent is sufÞciently impatient: for any" > 0 there existsr(") such that if
ri $ r(") for some agenti, then there is an equilibrium waiting region(ĝ, ˆG) with width less than
" and withvm # (ĝ,

ˆ

G).

We call the type of equilibrium highlighted in Proposition 2, one in which the waiting
region is no wider than ", an "-hasty equilibrium. For vanishingly small ", in an "-hasty
equilibrium, the group decides almost immediately, and which alternative is chosen de-
pends only on whether the initial belief ✓0 is greater or lower than the static preference
of agent m. The equilibrium outcome is, therefore, almost identical to that of a static
problem in which the median voter decides without the beneÞt of any information col-
lection. Note that the effect of the impatient agent on the equilibrium outcome cannot be
counterbalanced by the presence of one or more extremely patient agents in the group.
In Proposition 2, r(")Ñthe discount rate that ensures an equilibrium with an "-waiting
regionÑdoes not depend on the preferences of the other agents. Hence, the welfare loss
to the other agents could be large. Under majority rule, one agent is enough to trigger a
hasty equilibrium outcome, even when every other agent is very patient. In this sense,
majority rule is not a robust decision-making mechanism because the length of delibera-
tion can be dominated by one agent with extreme time preference. 12

As long as there is a very impatient agent, a hasty equilibrium exists. Whether the

12Since the agentsÕ utility functions are continuous in cutoffs, an equilibrium of the continuous-time
model would be an epsilon-Nash equilibrium of the discrete-time model with short time periods. When
there is a very impatient agent, we can verify that there is a mixed-strategy discrete-time equilibrium out-
come close to the hasty equilibrium outcome in the continuous time model.
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Figure 4. Deliberation collapses as one of the agents becomes extremely impatient. Whenr1 = r2 = r3 =
0.039(panel (a)), agent 1 is not pivotal and the equilibrium isP1. If r1 increases to0.6, his best-response
function �1 bends toward the 45-degree line. Agent 1 becomes pivotal and the equilibrium isP2. If r1

increases further to9 (panel (c)),�1 bends further and the equilibriumP3 is very close to the 45-degree
line. The implied waiting region is very short. The circles in each panel indicate the respective equilibrium
points when the decision rule requires unanimity.
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equilibrium is unique depends on whether the preferences of the other agents are sufÞ-
ciently different. In Figures 3 and 4, all agents except the impatient agent i < m have the
same discount rate. In Figure 3, the difference between vm+1 and vm is small, and there
exist two other equilibria that are more patient than the hasty equilibrium. In Figure
4(c), the difference betweenvm+1 and vm is large, and the hasty equilibrium is the unique
equilibrium.

When multiple equilibria exist, these equilibrium outcomes cannot be Pareto ranked.
Different agents may have different preferences over different equilibria. More impor-
tantly, even the same agent may have different preferences over two equilibria at differ-
ent beliefs. For example, an agent with strong static preference for ↵ would prefer a hasty
equilibrium when the belief is high (so she can obtain ↵ immediately), but would prefer
a more patient equilibrium when the belief is low (so she will not get � immediately).
Thus, even if a majority of agents initially prefer a more patient equilibrium to a hasty
equilibrium, some of these agents may change their minds as the belief changes.13

Compared to majority rule, super-majority rules are more resistant to the excessive
inßuence of a few impatient agents. In Figure 4(c), if unanimity rule is used instead of
majority rule, the equilibrium, now given by the intersection of �2 and �3, will no longer
be a hasty equilibrium. There is no need under unanimity rule for agents 2 and 3 to rush
to a decision because the vote of the impatient voter is no longer sufÞcient to swing the
outcome. We now elaborate on the robustness of super-majority against the presence of
impatient agents.

DeÞne the number of requisite swing votesof a rule as the minimum number of vote
changes to shift the outcome from adopting one alternative immediately to adopting the
other alternative immediately. The number of requisite swing votes of majority rule is
1Ñif ↵ and � each receivem votes, the last vote determines the outcome. More generally,
under rule k an alternative must receive at least k votes to be adopted. Because there are
2m " 1 agents altogether, the number of requisite swing votes of rule k is 2k " (2m " 1).

In what follows, we say that a group of impatient agents can trigger a collapse of delib-
eration if, for any " > 0, there is an equilibrium with a waiting region no wider than "

when every agent in that group has a discount rate greater than some r̃("), regardless of
the preferences of other agents.

Proposition 3. A group of impatient agents cannot trigger a collapse of deliberation whenever
the size of the group is smaller than the number of requisite swing votes.

13The result that one very impatient agent can trigger hasty deliberations depends on two features of
our model: Þrst, information arrives continuously; and second, as information arrives an agentÕs relative
preference between the two alternatives may change. In contrast, in the collective search model of Albrecht,
Anderson and Vroman (2010), a new proposal is drawn every period, and in equilibrium the agents never
adopt a past proposal. In their model an extremely impatient agent is essentially redundant because she
will accept almost any proposal.
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Under rule k, at least 2k " (2m " 1) agents switch their votes from ↵ at the upper
cutoff to � at the lower cutoff. Each of them can unilaterally delay the adoption of either
alternative at the equilibrium threshold. It can be shown that, given ri , agent i always
prefers delaying the adoption of at least one of the alternatives when the waiting region
becomes too narrow. Hence, unless all agents who vote for both alternatives at the cutoffs
are very impatient, no hasty equilibrium can exist. By contrast, in a hasty equilibrium
under majority rule only the very impatient agent is voting for both ↵ and � at the adop-
tion thresholds. Of the remaining 2m " 2 agents, half vote only for ↵ but not �, and
the other half vote only for � but not ↵. While each of these 2m " 2 agents may like to
simultaneously delay the adoption of both alternatives, none of them can do so. 14

Up to now we have focused on when extreme outcomes (collapse of deliberation) may
arise. In evaluating voting rules it is certainly important to understand more generally
how the accuracy of decisions (or, conversely their timeliness) responds to changes in the
voting rules. 15 It is also interesting to study the role of the composition of the commit-
tee. Some of our analysis is sharper when we assume symmetry within the committee.
Formally, a committee is symmetricif r1 = . . . = r2m! 1 and vm " vj = v2m! j " vm for
j = 1, . . . ,m " 1. In a symmetric committee, we say that preferences becomemore diverse
when, for any j = 1, . . . ,m " 1, vj decreases andv2m! j increases by the same amount. In
other words, a more diverse symmetric committee is one in which agents on both sides
of the median agent hold stronger opposing preferences for their favored alternative.

Proposition 4.

1. At least one of the alternatives is adopted later and with a greater accuracy in the most
patient and the least patient equilibria whenk increases or whenri for any agenti decreases.

2. In any equilibrium under rulek, the waiting region is no wider than the equilibrium waiting
region under unanimity rule for any subset ofk agents.

3. In a symmetric committee both alternatives are adopted later and with a greater accuracy
when all agents become more patient, when the size of the majority requirement increases,
or when the static preferences of agents become more diverse.

It is easiest to glean intuition into part 3 of the proposition. Since the pivotal agents in
a symmetric committee are agents 2m " k and k (see the discussion at the end of Section

14Although we consider decision rules that treat the two alternatives symmetrically, we note that the
issues we describe also exist in the case of asymmetric decision rules. For a rule that requiresk! votes to
adopt ↵ and k" votes to adopt �, the number of requisite swing votes is k! + k" " (2m " 1). As in the
symmetric case, one impatient agent may trigger a collapse of deliberation if the number of requisite swing
votes is one and, conversely, a group of impatient agents cannot trigger a collapse of deliberation if its size
is smaller than the number of requisite swing votes. We thank a referee for raising this point.

15The accuracy of a decision reßects the probability with which the alternative that all agents prefer in the
realized state is selected. We say that an aternative is adopted with greater accuracy in one setting relative
to another if the following holds: When that alternative is selected in the Þrst setting, the probability it is
optimal given the realized state is higher than when it is selected in the second setting.
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4), raising the majority requirement from k to k

" has the same effect as making preferences
in the outcome-equivalent two-person jury more diverse (raising the static preference of
one juror from v2m! k to v2m! k! , while raising that of another from vk to vk! ). In part 3 of
Proposition 4, we show that such a change will expand the equilibrium waiting region
(i.e., lower ĝ and raise ˆ

G), as each of the pivotal agents demands greater evidence before
adopting the alternative she is biased against. Deliberations are longer because, starting
from any initial belief within the waiting region, the time it takes to reach the bound-
aries increases. Decisions are more accurate because↵ is adopted only when the belief
reaches a higher upper cutoff ˆ

G, which corresponds to a higher probability that the state
is A. Likewise, a lower equilibrium ĝ means that � is adopted at a point when the prob-
ability of state B is higher. This result provides a contrast between our characterization
and those pertaining to private information collection, as in Feddersen and Pesendorfer
(1998), Persico (2004), and Austen-Smith and Feddersen (2005, 2006).

A symmetric committee provides a particularly simple setting to study the effect of
raising the size of the majority requirement k. Symmetry is sufÞcient but not necessary for
part 3 of Proposition 4 to hold. However, large departures from symmetry may invalidate
the result that an increase in k always produces more accurate decisions. Imagine, for
example, that agent 2m " k

" is much more biased for ↵ than agent 2m " k, while agent k" is
only slightly more biased for � than agent k. When the decision rule is raised from k to k

",
each of the two pivotal agents under decision rule k

" wants to extend the threshold before
adopting the alternative they control. Because slow decisions are strategic substitutes,
the less extreme agentk" may want to accommodate the longer expected waiting time
caused by the other more extreme pivotal agent by adopting ↵ earlier. If the second effect
dominates, then it is possible for the equilibrium upper cutoff ˆ

G to decrease, making the
decision for ↵ less accurate when it is adopted. In the general case where preferences
are not symmetric or when there is two-dimensional heterogeneity, it is not always the
case that increasingk lowers ĝ and raises ˆ

G. Nevertheless, part 1 shows that the waiting
region always become wider when k increases or when ri decreases for some agenti.
This implies that at least one of the alternatives will be adopted later and with a greater
accuracy.

Part 2 of Proposition 4 provides an interesting contrast with Proposition 3: the effects
of very impatient agents and very patient agents are not symmetric. Voting to delay
an alternative by a very patient agent would not cause other agents to adopt the other
alternative later. Unless they can block a decision by themselves, a subset of very patient
agents cannot prevent the group from reaching a decision. It takes 2m " k votes to block
a decision under rule k. As the majority requirement is increased by one, the maximum
number of very patient agents that can be allowed without causing endless deliberations
falls by one. In contrast, the number of requisite swing votes increases by two. Hence,
a properly chosen super-majority rule is robust to the presence of a few extreme agents
whose discount rates are either very high or very low. For example, suppose the very
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impatient agents and the very patient agents each make up 1/4 of the size of the group.
Then a decision rule with less than 3/4 super-majority requirement would prevent the
patient agents from creating protracted deliberations, and the impatient agents cannot
trigger a collapse of deliberation as long as the super-majority requirement is greater than
5/8.

6. Advantages of Majority Rule

We now turn to the advantages of majority rule. We highlight two important beneÞts:
in many environments majority rule is preferred by the committee members themselves
and majority rule respects static preferences.

We now consider how committee members evaluate voting rules and their associated
the accuracy-timeliness trade-off. We can obtain a particularly clean result maintaining
the assumption of symmetry. Because all agents have the same time preference, the me-
dian agent is pivotal for both ↵ and � under majority rule. The equilibrium waiting region
is simply her optimal waiting region (g

#
m , G

#
m). Let (ĝ, ˆG) represent the equilibrium wait-

ing region under super-majority rule k. Proposition 4 shows that ˆ

G " ĝ > G

#
m " g

#
m .

Furthermore, by symmetry, these two equilibrium waiting regions are both centered at
vm. We call a committee unbiasedif its preference proÞle satisÞes symmetry, and if the
initial belief ✓0 equals vm.

Proposition 5. In an unbiased committee, all agents prefer majority rule to super-majority rule.

This result says that, if the initial beliefs are not biased in favor of a particular alterna-
tive, then there is no conßict in the committee as to how to resolve the accuracy-timeliness
tradeoff. From the perspective of agent m, it is obvious that the waiting region (g

#
m , G

#
m)

is preferable to (ĝ,

ˆ

G). From the perspective of any other agent j )= m, the ideal waiting
region is centered at vj . Thus, both majority rule and super-majority rule generate a wait-
ing region that is centered at the ÒwrongÓ place for agentj. But since agentj has the same
time discount rate as agent m, super-majority rule also produces a waiting region that is
Òtoo wide.Ó This does not necessarily mean that agentj prefers majority rule to super-
majority rule, because agent jÕs utility also depends on the initial belief ✓0. However,
when the initial belief is near the center of the waiting region, there is unanimity in favor
of majority rule: all agents deem the waiting region under super-majority rule too wide
and prefer to use majority rule. Equivalently, in an unbiased committee, all agents pre-
fer to delegate the decision-making power to the median voter. 16 In the proof, we show
that, just as in the case of part 3 of Proposition 4, the result is robust to small violations of
symmetry.

If, on the other hand, the initial belief ✓0 is greater than G

#
m but smaller than ˆ

G, majority

16Indeed, majority rule would generate the same outcomes as the median voter would by behaving opti-
mally as a single decision-maker.
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rule would have adopted ↵ immediately, while there is still some prospect of getting �

under super-majority rule. Thus, an agent j with a sufÞciently strong preference for �

may prefer super-majority rule to majority rule despite the longer wait. However, in this
example all agents with a preference for ↵ stronger than that of the median agent prefer
to adopt ↵ immediately than to wait at this belief ✓0. In fact, we can show that, in general,
even though the preference for majority rule may not be unanimous, there is always a
majority of group members who prefer majority rule to a super-majority rule.

Propositions 4 and 5 suggest that, while symmetric committees themselves prefer
majority rules, the quality of decisions is actually superior with more restrictive super-
majority rules. That increased quality comes at the cost of longer deliberation, which is
borne by the agents themselves. Whenever there are positive externalities from high qual-
ity collective decisions, which may be especially relevant for juries or standard-setting
committees since their decisions arguably impact a society of individuals who do not
bear the deliberation cost themselves, super-majority rules may be preferable.

In the more general case of two-dimensional heterogeneity and asymmetric commit-
tees, there is an additional concern that arises when using super-majority rules. One
criterion for evaluating the quality of a collective decision is whether it accords with the
static preferences of members of the group. Under majority rule, if a majority of agents
prefer a different alternative to the one adopted in equilibrium, they can simply adopt
the one they prefer. This simple reasoning immediately implies that majority rule respects
static preferences, in the sense that at the end of deliberations at least a majority of agents
favor the alternative chosen to the one not chosen.

Proposition 6. Majority rule produces outcomes that always respect static preferences, i.e.,vm #
(ĝ,

ˆ

G). In contrast, under super-majority rulek > m, there is always a preference proÞle where as
many ask " 1 agents prefer↵ to � at a region in which� is selected: for a Þxed proÞle of discount
rates and static preferences of agents1, ..., k " 1, there existsv such that, ifvi > v for i $ k, then
ĝ > vk! 1.

Figure 5 illustrates. Panel (a) shows a symmetric committee with three agents under
unanimity rule. The equilibrium waiting region (ĝ,

ˆ

G) contains vm. That is, when � is
adopted at ĝ, agent m and agent 3 (a majority) both prefer the adopted alternative to
the one not chosen. However, when agent 3 has extreme preference for� (v3 is large
compared to static preference parameters of other agents), the equilibrium ĝ is greater
than vm, meaning that both agent 1 and agent m (a majority) actually prefer ↵ to � despite
voting for � at that cutoff.

Intuitively, under super-majority rules, a majority of agents may vote for � when they
prefer ↵ in order to get a faster decision. Thus, having a greater majority requirement
does not always help build consensus. Although a greater majority requirement may
create the appearance of a greater consensus, some of those who vote for an alternative
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Figure 5. Three agents make a decision under unanimity rule. In panel (a), static preferences are not
far apart, and equilibriumP1 produces outcomes that respect static preferences. In panel (b), agent 3 is
extremely biased for�, and both agent 1 and agentm actually prefer↵ to � when� is adopted atög in
equilibriumP2. A two-stage decision process with rulekD = 3 , kd = 2 moves the equilibrium outcome
from P2 to P3. The equilibrium waiting region is(vm , ! piv (vm )) . Deliberation stops atvm and, at the
decision stage, agentsm and 3 vote to adopt�. However, the waiting region is also wider (P3 is farther
from the 45-degree line than isP2). In panel (a),(v1, vm , v3) = ( " 0.2, 0, 0.2) andr1 = rm = r3 = 0 .039.
In panel (b),v3 is changed to 1.7.

may merely be trying to avoid costly delay. 17

7. Two-Stage Process: Deliberation Rules and Decision Rules

In our analysis thus far, a single rule k affects two types of decisions: how long to acquire
information, and what action to take once information collection comes to an end. It is
natural to consider the consequences of a two-stage procedure that distinguishes between
a deliberation ruleand a decision rule. A special case of a deliberation rule in a jury setting
corresponds to repeated straw polls, with a Þnal vote taken according to the decision rule
once the outcome of the straw poll indicates that sufÞcient consensus has been achieved.18

17In The Federalist No. 58, James Madison explained why he did not favor super-majority rules: ÒIt would
be no longer the majority that would rule; the power would be transferred to the minority. . . . [A]n in-
terested minority might take advantage of it to screen themselves from equitable sacriÞces to the general
weal, or in particular emergencies to extort unreasonable indulgencesÓ (Hamilton, Madison, and Jay 1982,
pp. 298Ð299).

18The guidelines distributed to jurors in many U.S. courts indicate that this protocol reßects the deliber-
ation process suggested to juries, see Murphy and Boatright (1999a, 1999b).
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In general, deliberation rules may differ from decision rules. For instance, many commit-
tees feature a committee chairman who has the same power as all the other members over
action decisions, but has a special role to play (and more power) in deliberation decisions.
The chairman case can be modeled as either a dictator at the deliberation stage, or as the
median voter in the committee.

We model the deliberation rule as a threshold rule kD such that deliberation ends as
soon askD members of the committee vote to end deliberation. The decision rule is anal-
ogously captured by a rule kd that describes the speciÞc qualiÞed majority required for
reaching a decision about which action to take after deliberation stops. In a two-stage
process, it might be the case that at the decision stage, there is nokd-majority of votes
for either alternative. In this case, we say that the committee is indecisive. We assume that
when the committee is indecisive, ↵ or � is determined by the ßip of a fair coin. 19 A classic
example of an indecisive committee corresponds to a hung jury that does not reach the
quorum required for conviction or for acquittal.

The analysis of two-stage processes allows us to highlight two distinct points. The
Þrst point pertains to whether outcomes respect static preferences. We saw that, under
super-majority rules, in the one-stage process it is possible that agents may vote against
their static preferences in order to shorten deliberation. This is no longer possible in a
two-stage process because the vote on the decision is separated from the vote on ending
deliberation; once a successful vote to end deliberation has taken place, no agent has
any incentive to vote against her static preference. This feature of the two-stage process
thus prevents a minority of agents from gaining excessive leverage under super-majority
rules. In turn, in this setting super-majority rules in the deliberation stage may become
more attractive from a societal perspective, as they still retain their function of promoting
longer deliberation. The second point pertains to the relative importance of deliberation
rules and decision rules for the time it takes committees to make a decision and for the
accuracy of these decisions.

In order to tackle the Þrst point, we assume that the decision rule kd is majority rule,
which simpliÞes the analysis considerably since the committee is never indecisive in the
second stage. However, we make no restrictions on the deliberation rule kD . In the second
stage, we assume that each agent votes for the alternative she likes given the current belief
✓. Hence,↵ is adopted if ✓ $ vm and � is adopted when ✓ < vm. This is often referred to as
Òsincere votingÓ and results from ruling out weakly dominated strategies at the subgame
corresponding to the decision stage. In the Þrst stage, each agent knows that voting for
ending deliberation when ✓ $ vm is tantamount to voting for ↵. Therefore, instead of
analyzing the two-stage game per-se, we study a modiÞcation of the one-stage game,
which we call the constrained deliberation game. In the constrained deliberation game, as

19The exact assumption we make about the consequences of indecisive committees is inconsequential as
most of our analysis focuses on cases where these do not occur.
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before, at every instant t, each agent independently votes for ↵, �, or neither, and an
alternative is adopted at time t if it receives kD votes or more. The constraint is that
agents can vote for ↵ only when ✓ $ vm and for � only when ✓ < vm. Because of these
constraints, we need to slightly modify the second part of our deÞnition of equilibrium
in section 2. Instead of requiring each agent to vote for an alternative before the belief
reaches the equilibrium cutoff whenever the marginal gain from an earlier decision is
positive, we now only require an agent to do so when the constraints are not binding.
In what follows, we slightly abuse language by referring to equilibria of this constrained
deliberation game as the outcomes of the two-stage process described above.

Recall that for any agent i, we denoted by �i (G) the agentÕs lower best-response func-
tion, the optimal lower cutoff g for any Þxed upper cutoff G. In the constrained game, the
agent cannot vote for � when ✓ $ vm. Therefore, her constrained best response would be
given by min{�i (G), vm} . A similar calculation follows for the agentÕs constrained upper
best response. We denote the constrained best-response functions for agenti as follows:

�

c
i (G) & min{�i (G), vm} ,

�

c
i (g) & max{�i (g), vm} .

DeÞne�c
piv (G; kD ) to be the kD -th largest �c

i (G) for each G, and �c
piv (g; kD ) to be the kD -th

smallest �c
i (g) for each g. Using the same reasoning as in the unconstrained case, it is

straightforward to see that (ĝ

c
,

ˆ

G

c
) is an equilibrium outcome of the constrained deliber-

ation game, if and only if it is a Þxed point of (�

c
piv ,�

c
piv ) and ĝ

c
<

ˆ

G

c.

There are two types of equilibrium outcomes in this constrained deliberation game,
and therefore in the two-stage process. An unconstrained outcomeis one in which neither
cutoff is constrained (i.e., ĝc

< vm <

ˆ

G

c). A constrained outcomeis one in which one of the
equilibrium cutoffs is vm. It is straightforward to show that for any g and G

�

c
piv (G; kD ) = min{�piv (G), vm} ,

�

c
piv (g; kD ) = max{�piv (g), vm} .

Hence, an unconstrained outcome is an equilibrium outcome under the two-stage deci-
sion process if and only if it is also an equilibrium outcome in the unconstrained deliber-
ation game.

When an equilibrium outcome in the unconstrained deliberation game does not re-
spect static preferences, it can no longer be implemented under the two-stage decision
process.

A constrained outcome (ĝ

c
,

ˆ

G

c
) is an equilibrium of the two-stage process if and only

if ĝc
<

ˆ

G

c and one of the following conditions holds:

27



1. (ĝc
,

ˆ

G

c
) = (vm ,�piv (vm)), and �piv (�piv (vm)) $ vm;

2. (ĝc
,

ˆ

G

c
) = (�piv (vm), vm), and �piv (�piv (vm)) ' vm.

Indeed, a constrained outcome is constrained either on the lower or the upper cutoff.
Condition 1 corresponds to the former, where the lower cutoff is constrained: ĝ

c
= vm. To

see the intuition for this condition, notice that the upper cutoff must be a best response
for the corresponding pivotal agent, and so it must be the case that ˆ

G

c
= �piv (vm). Fur-

thermore, the lower cutoff must be a constrained best response for the relevant pivotal
agent, so that

�

c
piv (

ˆ

G

c
; kD ) = min{�piv (

ˆ

G

c
), vm} = min{�piv (�piv (vm)), vm} = vm .

It follows that �piv (�piv (vm)) $ vm. Analogous considerations pertain to outcomes with a
constrained upper cutoff, generating condition 2 above.

Panel (b) of Figure 5 depicts a constrained equilibrium with three agents. In the Þgure,
the equilibrium outcome in the unconstrained game under unanimity rule is (ĝ,

ˆ

G) (point
P2). In this equilibrium agents 1 and m prefer ↵ but vote to adopt � at ĝ. Under the
two-stage decision process the equilibrium outcome is (vm ,�piv (vm)) (point P3). Notice
that all three agents prefer to adopt � earlier but cannot vote for � until ✓ reachesvm.
Intuitively, P2 is not an equilibrium outcome in a two-stage decision process because if
deliberation ends at ĝ, agents 1 andm will vote for ↵ in the second stage. Anticipating
that, agent 3, who prefers waiting at ĝ, would hold on until either agent m switches and
supports � (when ✓ = vm) or she switches and prefers ↵ to waiting (when ✓ = �piv (vm)).
From panel (b) of Figure 5 it is clear that the waiting region of a constrained equilibrium
is wider than that of the equilibrium it replaces in the unconstrained game, and hence
the corresponding decisions taken by the committee are more accurate. In fact, this is
generally the case, and we have the following proposition.

Proposition 7. Consider an equilibrium outcome(ĝ, ˆG) of the one-stage process for a committee
with preference proÞle(v1, ..., v2m! 1) and voting rulek. If either ĝ $ vm or ˆ

G ' vm, then there
exists an equilibrium outcome(ĝc

,

ˆ

G

c
) for the same committee in the constrained deliberation game

with deliberation rulekD = k such that the waiting region(ĝc
,

ˆ

G

c
) contains(ĝ, ˆG).

The proposition implies that a group of impatient agents cannot trigger a collapse of
deliberation in a two-stage process under deliberation rule kD and decision rule m in the
constrained game if it cannot do so under the same rule k = kD in the one-stage process.
If preferences are symmetric, the one-stage and two-stage processes have the same set
of equilibrium outcomes. But when preferences are unbalanced, having a separate deci-
sion vote offers additional protection against outcomes dominated by extreme minority
preferences. This protection, however, is not without cost: since the length of deliber-
ation is likely to be longer, committee members may actually prefer the unconstrained
equilibrium to the constrained one.
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We now turn to the relative impacts of deliberation and decision rules. We allow any
decision rule and any deliberation rule. The equilibrium notion we use is that of Nash
equilibrium with strategies that are not weakly dominated at any subgame corresponding
to the decision stage. We focus on scenarios in which all agents are very patient. It is
easy to see that in any equilibrium of the one-stage deliberation game, when agents are
sufÞciently patient, the waiting region must contain the static preference vi for all agents i.
This means that when an alternative is adopted at the cutoff, it is unanimously preferred
by all agents. We show that the resulting unconstrained outcome of the one-stage game is
an equilibrium outcome of the two-stage decision process, regardless of the second-stage
decision rule kd.20 In particular, neither the time to a decision nor the relative probability
of the two types of errors depend on the decision rule.

Proposition 8. Consider any proÞle of static preferences and any two-stage decision rule(kD , kd).
There existsr such that, wheneverri ' r for all i, if (ĝ, ˆG) is an equilibrium outcome of the
one-stage process under rulek, then it is an equilibrium outcome of the two-stage process for
deliberation rulekD = k and any decision rulekd. Furthermore, in the corresponding equilibrium,
voting is unanimous at the decision stage.

Proposition 8 implies that, when agents are sufÞciently patient, the decision rule has
no inßuence on certain equilibrium outcomes. Furthermore, these equilibria can be im-
plemented using a one-stage process. In the following section we discuss some empirical
and experimental evidence on juries consistent with this result.

8. Empirical Relevance

8.1. Application to Juries

In this section we discuss some evidence on juries documented in the literature. Some of
this evidence speaks to the basic structure of the model and some is directly related to our
results. This evidence suggests that our model is broadly consistent with some patterns
in the data.

In the model, longer deliberation corresponds to additional signals received by the
committee. Our interpretation is that this is a reasonable shortcut for thinking about how
deliberation helps jurors gain an understanding of the evidence presented at trial. Even
though no additional explicit information is received by the jurors during deliberation,
it has the function of processing information and understanding the relative importance
of different, potentially contrasting pieces of evidence. 21 In particular, the model Þts a

20We say that (g,G) is an equilibrium outcome of the two-stage process with voting rules (kD , kd) if there
is an equilibrium of the two stage-process that induces a conclusion of information collection when beliefs
are outside of the interval (g,G), a choice of↵ for beliefs greater than G, and a choice of� for beliefs lower
than g.

21During deliberation, the jury must sift through the mass of sometimes conßicting evidence presented
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plausible deliberation protocol in which the jury conducts repeated straw polls until a
sufÞcient consensus emerges.

Legal scholars emphasize thefact-Þndingrole of juries (e.g., Vidmar and Hans 2007).
A substantial fraction of deliberation appears to be devoted to a discussion of the facts
(Pennington 1983). In fact, starting from Kalven and Zeisel (1966), numerous scholars
have argued that juries do a good job at reaching an understanding of the facts. In a
study of mock juries, Ellsworth (1989) writes: ÒIn general, over the course of deliberation,
jurors appear to focus more on the important facts and issues, come to a clearer under-
standing of them, and approach consensus on the facts.Ó This literature also suggests the
importance of the interaction between decision rules and deliberation protocols. For in-
stance, Hastie, Penrod, and Pennington (1983) point out that the volume of discussion
substantially increases with the decision rule.

Importance of deliberation and verdict patterns. In terms of the underlying assump-
tions of the model, there is evidence suggesting the importance of deliberation and the
idea of collective information collection. Hannaford et al. (2000) studied the timing of
jury opinion formation. Their data include survey responses of 1,385 jurors from 172 tri-
als. Over 95 percent of jurors reported changing their minds at least once over the course
of the trial. Importantly, over 40 percent of jurors reported changing their minds dur-
ing the Þnal deliberations, suggesting that deliberation is a key component of opinion
formation for jurors.

Hans (2007) studied jury deliberation by using surveys conducted by the National
Center for State Courts. The data contain reports from close to 3,500 jurors who had
participated in felony trials. Figure 6 summarizes one key Þnding by Hans (2007). The
Þgure groups each jury into Þve categories depending on the outcome of an initial straw
poll. These go from Òstrongly favor innocentÓ where the great majority of jurors initially
favored acquittal, to Òleaning toward innocent,Ó where a small majority initially favors
acquittal, to Òclosely divided,Ó where the jury is evenly split (5Ð7, 6Ð6, or 7Ð5), to Òleaning
toward guilty,Ó and Þnally to Òfavor guilty.Ó For each initial leaning of the jury, the Þgure
describes the distribution of ultimate outcomes.

Note Þrst, that the patterns of opinion change are consistent with collective informa-
tion acquisition driven by a Bayesian updating process (as in our model). When the initial
vote in the jury strongly supports a particular outcome, that outcome is more likely to
ultimately emerge. For instance, 77 of the 89 juries with strong majorities for guilt con-
victed the defendant. However, the ultimate outcome does change during deliberation:
11 of these 89 juries ended up acquitting the defendant. Recall that the verdict had to be
unanimous. Therefore, in all these 11 cases almost all jurors changed their mind during

by two opposing parties during the trial to Þgure out the relevance of different pieces of information and
the weight to attribute to these in converging to a verdict. Thus, it makes sense to think of part of the
deliberation process as a continuation of the information acquisition that took place during trial.
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Figure 6. Distribution of jury outcomes according to initial jury leanings. Source: Hans (2007).

deliberation. 22 Thus, the deliberation process did have a large effect in these juries.

Jury composition. In line with our Proposition 4, increased heterogeneity in static
preferences has been found to increase quality and length of deliberation; see Goeree and
Yariv (2011), who present experimental evidence that increased preference heterogeneity
increases deliberation length and accuracy of decisions. In our model, more diverse static
preferences increase the length of deliberation since the pivotal members at the deliber-
ation stage become more extreme. This translates immediately into longer deliberation
and, in symmetric committees, more accurate decisions.

Effects of the decision rule. The message of our Proposition 8 is that, under some
conditions, the decision rule in two-stage process does not affect outcomes. Baldwin and
McConville (1980) studied a reform in 1974 in England that allowed for majority verdicts
in criminal trials, while prior to the reform unanimity was required. A predominance
of verdicts (311 out of 326 cases) were unanimous even after the reform, suggesting that
the decision rule did not have much of an effect. Kalven and Zeisel (1966) report sim-
ilar patterns for U.S. states that do not require unanimity for conviction: most verdicts
are unanimous anyway. Hastie, Penrod, and Pennington (1983) Þnd, however, that the
volume of discussion substantially increases with the decision rule. In laboratory exper-
iments, Goeree and Yariv (2011) Þnd that, when subjects cannot talk before voting, the

22Initial consensus may be overstated as Þrst poll is not taken until some consensus has already emerged.
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decision rule has an effect, whereas, when subjects can talk, the decision rule has very
little effect. 23 Our model provides a possible explanation for the fact that in some cir-
cumstances the decision rule seems to have little effect on decisions. We show that, when
agents are sufÞciently patient, in equilibrium, deliberation always ends with unanimous
decisions: whenever there is disagreement on the appropriate decision to take, members
of the committee agree that it is worthwhile to continue deliberating.

8.2. Standard-setting Committees

Standard-setting organizations are voluntary organizations that provide a platform for
interested parties to coordinate on technological standards. Some standard-setting orga-
nizations consist solely of platform sponsors; others include also user groups, academics,
and government agencies (e.g., the American National Standards Institute, or the World
Wide Web Consortium). The standard-setting process begins when one or multiple spon-
sors submit proposed standards. A committee is then formed to consider the pros and
cons of different proposals. Expert opinions play an important role in this process. For
example, laboratory and Þeld experimental studies were commissioned to evaluate dif-
ferent bar code designs (Brown 1997).

The evaluation process takes time. The average duration to adopt an internet standard
is about 3.5 years (Simcoe 2012). In addition to different preferences over alternatives,
various parties may also disagree over the timing of the decision. In the history of stan-
dardization of containers, trucking Þrms had lower stakes than shipping lines because
the latter had to make substantial investments in ships and docks. As a result, trucking
Þrms wanted to reach agreement on container sizes more quickly (Levinson 2006). More
generally, sponsors, who have vested interests in their own technologies tend to be more
patient, while usersÑdownstream Þrms that build applications on the platformÑmay
prefer quicker resolution.

There is a small literature on standard-setting committees. Farrell and Saloner (1988)
and Farrell and Simcoe (2012) model the standardization process as a war of attrition
between two platform sponsors. The perspective ignores the fact that deliberation, while
costly, also produces valuable information. Simcoe (2012) introduces a model of collective
search, whereby each sponsor draws a new value for its technology. In reality, the alter-
natives under consideration are not Þxed, but as long as these modiÞcations are marginal
rather than radical, our model captures the strategic effects resulting from the evolving
nature of the information accumulation process.

There is no consensus on what decision rules a standard-setting organization should
use to adopt standards. Chiao, Lerner, and Tirole (2007) report that in their sample
of standard-setting organizations, 34 percent use majority rule, 27 percent use super-

23Blinder and Morgan (2008) also Þnd little differences in outcomes when decision rules are changed in
an experiment concerning monetary policy.
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majority rules, and 13 percent use consensus to adopt standards. Our results suggest
that there is no single decision rule that suits all standard-setting organizations. Major-
ity rule may be more suitable to organizations whose members have similar time pref-
erences, such as those that consist solely of technology providers, as it ensures that the
adopted standard is preferred by a majority of the members. For standard-setting or-
ganizations that have a diverse membership or when the standard affects the welfare of
non-members, a super-majority rule may perform better, as it promotes deliberation and
prevents low-stake or impatient members from exerting disproportionate inßuence. Our
results, however, also point out the potential danger of a high majority requirement. In-
stead of promoting consensus, such rules may also allow a deep-pocketed Þrm, who can
afford a drawn-out process, to force other interested parties to concede.

9. Conclusions

Deliberation is an integral part of many real-life collective decisions. In addition to the ex-
amples mentioned up to now, there has been a more recent surge of interest in the idea of
Òdeliberative democracyÓ in political science (e.g., Gutmann and Thompson 2004; Fishkin
2009; Steiner 2012), emphasizing consensus building more than preference revelation.

In this paper, we introduce a formal model of open-ended collective deliberations and
explain how different decision rules aggregate heterogenous static and time preferences.
Our analysis highlights the difference between static voting and dynamic deliberation.
Whereas super-majority rules favor a particular alternative in a static environment, they
force agents to gather more information in deliberative processes. We show that several
features of our model are consistent with jury behavior, and our results explain why many
deliberative bodies adopt super-majority rules.
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Appendix

Proof of Lemma 1. Part 1. A direct calculation gives:
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Therefore, the sign of @ui/@G depends only on the sign of vi " g " f(ri , G " g) and not on
the value of ✓. Similarly,
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Therefore, the sign of @ui/@g depends only on the sign of f(ri , G " g) " G+ vi and not on
the value of ✓.

Part 2. The derivative @ui/@G has the same sign asvi " g " f(ri , G " g), which is strictly
decreasing in G. Similarly, @ui/@g has the same sign asf(ri , G " g) " G + vi , which is
strictly decreasing in g.

Proof of Lemma 2. We only establish the statements for the upper best-response function;
the proof for the corresponding part (b) follows from similar reasoning.

Part 1. From the proof of Lemma 1, the sign of @ui/@G depends only on the sign of
vi " g " f(ri , G " g) when ✓ # [g,G]. Supposeg $ vi . As f(ri , G " g) > 0 when G > g, we
have @ui/@G < 0. This shows that �i (g) = g when g $ vi .

Supposeg < vi . As vi " g" f(ri , G" g) is strictly decreasing in G, and is strictly negative
at G = g and strictly positive when G is sufÞciently large, there is a unique G

"
> g such

that @ui/@G = 0 at G = G

". By Lemma 1, ui (g,G
" | ✓) $ u(g,G | ✓) for any G $ g and for

all ✓ # [g,min{G,G

"} ] * [max{G,G

"} ,% ]. If G < ✓ < G

", then ui (g,G
" | ✓) > ui (g, ✓ | ✓) =

ui (g,G | ✓). If G > ✓ > G

", then ui (g,G | ✓) < ui (g, ✓ | ✓) = ui (g,G
" | ✓). This shows that

�i (g) = G

"
> g when g < vi .

The continuity of �i follows from the continuity of f(ri , G " g) and the fact that
f(ri , 0) = 0. Thus, limg&vi �i (g) = vi . Twice differentiability follows from the implicit
function theorem, since the function deÞning the Þrst-order condition is smooth.

Part 2. To show that limg$!% �i (g) = "% , suppose to the contrary that there is a Þnite
lower bound b to �i (g). We Þrst show that there exists ag" such that vi " g " f(ri , b " g) < 0
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for all g < g

". To see this, observe that

lim

g$!%

f(ri , b " g)

vi " g

= lim

g$!%
f2(ri , b " g) = R2 > 1.

Furthermore, for any g < g

" and g < vi , vi " g " f(ri , G " g) > 0 when G = g. Thus, there
exists aG" # (g, b) that satisÞesvi " g " f(ri , G

" " g) = 0. Because�i (g) = G

" when g < vi ,
it follows that �i (g) < b for all g < g

", a contradiction.

Let f2 and f22 represent the Þrst and second derivatives of f with respect to G " g. For
g < vi , differentiate the Þrst-order condition, vi " g " f(ri ,�i (g) " g)) = 0, with respect to
g to get

�

"
i (g) = 1 "

1

f2
,

�

""
i (g) =

f22 (�
"
i " 1)

f

2
2

.

For G " g > 0,

f2 = " R1R2
e

R2(G! g) " e

R1(G! g)

R2e
R1(G! g) " R1e

R2(G! g)
> 0,

f22 = "
R1R2(R2 " R1)

2
e

G! g

(R2e
R1(G! g) " R1e

R2(G! g)
)

2 > 0.

Therefore,�"
i (g) < 1 and �""

i (g) < 0.

Finally, we show that �i (g) reaches a maximum atg = g

#
i . For any g < vi , the one-sided

stopping problem satisÞes a smooth pasting condition at the one-sided optimal threshold
�i (g) (see, for example, Dixit 1993). Therefore, atG = �i (g) and ✓ = �i (g),

@ui

@✓

=

d(e

!
/(1 + e

!
))

d✓

.

Differentiate both sides with respect to g to yield, at G = �i (g) and ✓ = �i (g),

!
d

2
(e

!
/(1 + e

!
))

d✓

2 "
@

2
ui

@✓@G

"
@

2
ui

@✓

2

#
�

"
i (g) =

@

2
ui

@✓@g

.

At g = g

#
i , we have G = �i (g

#
i ) = G

#
i . Both @ui/@G and @ui/@g are equal to 0 at the

optimal thresholds, and dynamic consistency implies that this value does not change with
✓. Therefore, at g = g

#
i , G = G

#
i and ✓ = G

#
i , we obtain:

!
d

2
(e

!
/(1 + e

!
))

d✓

2 "
@

2
ui

@✓

2

#
�

"
i (g

#
i ) = 0.
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Because the stochastic processdS" has an expected drift µ"
(e

! " 1)/(1 + e

!
) and an instan-

taneous variance2µ", applying ItoÕs lemma gives:

r

µ

"
ui =

e

! " 1

1 + e

!

@ui

@✓

+

@

2
ui

@✓

2 .

Using the smooth pasting condition for @ui/@✓, we obtain:

d

2
(e

!
/(1 + e

!
))

d✓

2 "
@

2
ui

@✓

2 = "
r

µ

"
ui < 0.

This establishes that�"
i (g

#
i ) = 0. When g < vi , as�i (g) is strictly concave, it reaches a

maximum at g = g

#
i .

Part 3. For g < vi , �i (g) satisÞesvi " g " f(ri ,�i (g) " g) = 0. Because the left side of
this equation increases without bound in vi , and becausef2 > 0, �i (g) increases without
bound in vi . Moreover, for g ' vi , a marginal increase in vi has no effect on�i (g), whereas
raising vi to v

"
i > g will bring �i (g) from g to a value strictly greater than g.

Let f1 be the derivative of f with respect to ri . From the deÞnitions of R1 and R2, we
note that @R2/@ri > 0 and @R1/@ri = " @R2/@ri . Therefore, f1 has the same sign as:

e

(R2! R1)(G! g) "
1 + (R2 " R1)R2(G " g)

1 " (R2 " R1)R1(G " g)

> 1 + (R2 " R1)(G " g) "
1 + (R2 " R1)R2(G " g)

1 " (R2 " R1)R1(G " g)

=

" (R2 " R1)
2
R1(G " g)

2

1 " (R2 " R1)R1(G " g)

> 0.

Becausef(ri , G " g) increases in both ri and G " g, �i (g) decreases inri for g < vi . For
g $ vi , �i (g) does not change with ri .

Furthermore, we have f(0, G " g) = 0 and

lim

r i $%
f(ri , G " g) = lim

r i $%

!
1 +

ri

µ

"

#
*
e

R1(G! g)
+ e

R2(G! g)
+
= % .

Thus, for any g < vi and any " > 0, we can chooseri such that

vi " g " f(ri , ") = 0.

Becausef1 > 0 and f2 > 0, for any ri $ ri we must have �i (g) " g ' ".

We use Lemma 2 to establish two additional claims. Claim 1 is concerned with the
property of the composite function �i (�i (G)). Claim 2 says that if the waiting region is
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narrower than the optimal waiting region for agent i, then he strictly prefers to adopt at
least one of the alternatives later. Likewise, if the waiting region is wider than his optimal
waiting region, then he prefers to adopt one of the alternatives earlier.

Claim 1. For any agenti,

1. �i (�i (G)) > G for allG # (vi , G
#
i );

2. �i (�i (G)) < G for allG > G

#
i .

Proof. Part 1. Let h(G) & �i (�i (G)) " G. Then for G # (vi , G
#
i ),

h

""
(G) = �

""
i (�i (G)) [�

"
i (G)]

2
+ �

"
i (�i (G))�

""
i (G) < 0,

because by part 2 of Lemma 2,�i is strictly concave, �i is strictly convex, and �"
i (�i (G)) <

0 since �i (G) > g

#
i . Thus, h is strictly concave for G # (vi , G

#
i ). This, together with

h(vi ) = h(G

#
i ) = 0, implies that h(G) > 0 for G # (vi , G

#
i ).

Part 2. Sincemaxg�i (g) = G

#
i , we have h(G) ' G

#
i " G < 0 for all G > G

#
i .

Claim 2. For any agenti and any(g,G) /# { (g#
i , G

#
i ), (vi , vi )} ,

1. if G " g ' G

#
i " g

#
i , then eitherg > �i (G) orG < �i (g);

2. if G " g $ G

#
i " g

#
i , then eitherg < �i (G) orG > �i (g).

Proof. Part 1. SupposeG " g ' G

#
i " g

#
i . (i) If G > G

#
i , then becauseG " �i (G) is strictly

increasing in G (part 2 of Lemma 2), we have G " �i (G) > G

#
i " �i (G

#
i ) $ G " g. Hence,

g > �i (G). (ii) If g < g

#
i , then because�i (g) " g is strictly decreasing in g, we have

�i (g) " g > �i (g
#
i ) " g

#
i $ G " g. Hence,�i (g) > G. (iii) Suppose g $ g

#
i and G ' G

#
i . If

G > g $ vi , then �i (G) < vi ' g because�i is decreasing for G # [vi , G
#
i ]. If vi $ G > g,

then �i (g) > vi $ G because�i is decreasing for g # [g

#
i , vi ]. If G $ vi $ g, then by Claim

1,�i (�i (G)) > G for G # (vi , G
#
i ). As �i is decreasing for g # [g

#
i , vi ], if g ' �i (G) then we

must have �i (g) $ �i (�i (G)) > Gi .

Part 2. SupposeG " g $ G

#
i " g

#
i . Because(g,G) )= (g

#
i , G

#
i ), either G > G

#
i or g < g

#
i . If

G > G

#
i , then G > �i (g) for any g. If g < g

#
i , then g < �i (G) for any G.

Proof of Lemma 3. A cutoff pair (ĝ,

ˆ

G), with ĝ )= ˆ

G, solves the constrained optimization
problem for some ✓ within the boundaries only if it satisÞes the Kuhn-Tucker conditions:

@ui

@G

&
''(

'')

' 0 if ˆ

G = Gi ,

= 0 if ˆ

G # (Gi , Gi ),

$ 0 if ˆ

G = Gi ;

@ui

@g

&
''(

'')

' 0 if ĝ = g

i
,

= 0 if ĝ # (g

i
, gi ),

$ 0 if ĝ = gi .
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From the deÞnition of the the best-response functions, (ĝ, ˆG) satisÞes the Kuhn-Tucker
conditions if and only if it satisÞes (2) and (3).

We now show that there is only one pair of thresholds that satisÞes the Kuhn-Tucker
conditions. Suppose, by way of contradiction, that (g

"
, G

"
) and (ĝ,

ˆ

G) both satisfy the
Kuhn-Tucker conditions. Because the one-sided preferences are single-peaked,g" )= ĝ

and G

" )= ˆ

G. There are two cases to consider.

Case 1:g"
> ĝ and G

"
>

ˆ

G. Becauseg"
> g

i
and G

"
> Gi , the Kuhn-Tucker conditions

require that at the point (g

"
, G

"
), @ui/@g $ 0 and @ui/@G $ 0. (This means that (g"

, G

"
) is

in region Q2 of Figure 1.) Therefore, g" ' �i (G
"
) and G

" ' �i (g
"
). Because�i (g

"
) ' G

#
i ,

ˆ

G < G

" ' �i (g
"
) ' G

#
i . By part 2 of Lemma 2, �i (

ˆ

G) > �i (G
"
) $ g

"
> ĝ. Hence,@ui/@g > 0

at (ĝ, ˆG). (Intuitively, because (ĝ,

ˆ

G) is south-west of (g

"
, G

"
), it must belong to either

region Q1 or Q2 in Figure 1.) However, because ĝ < gi , the Kuhn-Tucker conditions
require @ui/@g ' 0 at that point.

Case 2:g"
> ĝ and G

"
<

ˆ

G. Becauseg"
> g

i
and G

"
< Gi , the Kuhn-Tucker conditions

require that at the point (g

"
, G

"
), @ui/@g $ 0 and @ui/@G ' 0. (This means that (g"

, G

"
) is

in region Q1 in Figure 1.) By part 1 of Claim 2, G

" " g

"
> G

#
i " g

#
i . BecauseˆG " ĝ > G

" " g

",
ˆ

G" ĝ > G

#
i " g

#
i . It then follows from part 2 of Claim 2 that either @ui/@g > 0 or @ui/@G < 0

at (ĝ, ˆG). (Intuitively, as �i has a positive slope for g ' g

#
i and �i has a positive slope for

G $ G

#
i , (ĝ, ˆG), which is north-west of (g

"
, G

"
), must belong to region Q1.) However, as

ĝ < gi and ˆ

G > Gi , the Kuhn-Tucker conditions require @ui/@g ' 0 and @ui/@G $ 0 at
that point.

Thus, for any ✓, the only (g,G) that satisÞes the Kuhn-Tucker conditions with ✓ #
(g,G) is the pair (ĝ,

ˆ

G). Because a solution to the constrained maximization problem (1)
always exists, (ĝ, ˆG) is a solution to (1) if ui (ĝ,

ˆ

G | ✓) is greater than e

vi
/(1 + e

!
) when

adopting � immediately is feasible at ✓, and greater than e

!
/(1 + e

!
) when adopting ↵

immediately is feasible.

Suppose✓ # [ĝ,

ˆ

G]. Adopting � immediately is feasible if ✓ < gi . In this case, the Kuhn-
Tucker conditions imply that at the point (ĝ,

ˆ

G; ✓), @ui/@g ' 0 (as ĝ ' ✓ < gi ). It follows
from Lemma 1 that ui (ĝ,

ˆ

G | ✓) $ ui (✓,
ˆ

G | ✓) = e

vi
/(1 + e

!
). Adopting ↵ immediately is

feasible if ✓ $ Gi . In this case, the Kuhn-Tucker conditions imply that at the point (ĝ,

ˆ

G; ✓),
@ui/@G $ 0, and it follows that ui (ĝ,

ˆ

G | ✓) $ ui (ĝ, ✓ | ✓) = e

!
/(1 + e

!
).

Suppose✓ >

ˆ

G. Under (ĝ,

ˆ

G), ↵ is adopted immediately. If adopting � immediately
is feasible (i.e., ✓ < gi ), then it must also be feasible at ˆ

G. But we have already shown
in the last paragraph that agent i prefers ↵ to � at ˆ

G whenever adopting � immediately
is feasible. Because the relative payoff of↵ increases an agentÕs belief, agenti must also
prefer ↵ to � at ✓. By similar logic, if ↵ is feasible at some✓ < ĝ, agent i must prefer � to
↵.
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Proof of Proposition 1 . Necessary and sufÞcient condition for equilibrium.SufÞciency. Sup-
pose (ĝ, ˆG) is an unequal Þxed point of (�piv ,�piv ). Consider the strategy proÞle � where,
for each i,

�i = (�i (
ˆ

G),�i (ĝ)).

It is straightforward to see that (g

[k]
(�), G

[k]
(�)) = (ĝ,

ˆ

G). Furthermore, for each agent
i, ĝ satisÞes (2) given ˆ

G, and ˆ

G satisÞes (3) given ˆ

G. Hence, by Lemma 3, � is a Nash
equilibrium. Furthermore, by the single-crossing property of Lemma 1, � also satisÞes
condition 2 of the equilibrium deÞnition. The above argument shows that if (ĝ,

ˆ

G) is an
unequal Þxed point of (�piv ,�piv ), then it is an equilibrium outcome of the game.

Necessity. Suppose� is an equilibrium strategy proÞle. Let (ĝ,

ˆ

G) = (g

[k]
(�), G

[k]
(�)).

By the single-crossing property of Lemma 1, we can restate condition 2 of DeÞnition 1 as
requiring that, for each agent i, Gi >

ˆ

G if �i (ĝ) >
ˆ

G and Gi <
ˆ

G if �i (ĝ) <
ˆ

G. It follows
that a pivotal agent i with Gi =

ˆ

G must have Gi = �i (ĝ). There are k " 1 agents with
Gj ' ˆ

G; the lower bound of their upper spans of control I

G
(�! j ) is ˆ

G because they can
delay but not accelerate the adoption of ↵. By Lemma 3 we have �j (ĝ) ' ˆ

G for each
of these k " 1 agents. Similarly, there are 2m " k " 1 agents with Gj $ ˆ

G; the upper
bound of their upper spans of control I

G
(�! j ) is ˆ

G because they can accelerate but not
delay the adoption of ↵. By Lemma 3 we have�j (ĝ) $ ˆ

G for these agents. This argument
establishes that agent iÕs upper best-response function is thek-th smallest upper best-
response function when the lower cutoff is at ĝ. Hence, ˆ

G = �i (ĝ) = �piv (ĝ). Similar
reasoning for the lower best-response shows that ĝ = �piv (

ˆ

G). Thus, (ĝ, ˆG) must be a
Þxed point of (�piv ,�piv ).

Non-degeneracy. We now show that g[k]
(�) < G

[k]
(�). Note that (x, x) is an equal Þxed

point of (�piv ,�piv ) if �piv (x) = �piv (x) = x. When g $ vk ,�i (g) = g for i ' k and �i (g) > g

for i > k. Hence,�piv (g) = g for g $ vk . In contrast, when g < vk , �i (g) > g for all i $ k.
It follows that �piv (g) > g for g < vk . By similar logic, �piv (G) = G when G ' v2m! k and
�piv (G) < G when G > v2m! k . Becausev2m! k > vk when k > m, (�piv,�piv ) has no equal
Þxed point when k > m.

When k = m, the only equal Þxed point is (vm , vm). Suppose, by way of contradiction,
that (vm , vm) is an equilibrium outcome. Condition 2 of DeÞnition 1 would require each
i > m to chooseGi > vm and each j < m to choosegj < m. If agent m choosesGm > vm,
then ↵ will not be adopted at vm. In other words, agent m can delay the adoption of ↵ by
choosing Gm > vm. By a similar logic, agent m can delay the adoption of � by choosing
gm < vm. Pick " # (0, G

#
m " vm) such that agentm can delay the adoption of ↵ by " and the

adoption of � by vm " �m(vm + "). Because agentmÕs span of control is non-degenerate,
such deviation is feasible if " is sufÞciently small. From Claim 1, �m(�m(vm +")) > vm +".
Hence, by Lemma 1,

um (�i (vm + "), vm + " | vm) > um (�i (vm + "), vm | vm) = e

vm
/(1 + e

vm
).
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So(vm , vm) cannot be optimal for agent m.

Equilibrium existence.An equilibrium exists if and only if (�piv ,�piv ) has an unequal
Þxed point. Consider any k $ m. Given that for any x < v1 and all i, �i (x) = x

and �i (x) > x, we have �piv (�piv (x)) > x. Because for all i, �i (x) ' G

#
i , we have

�piv (�piv (x)) < x for any x > maxi {G#
i } . By continuity, there exists x

" # [v1,maxi {G#
i } ],

such that �piv (�piv (x
"
)) = x

"
. Hence, (�piv ,�piv ) has a Þxed point under any rule k $ m.

We have already shown that (�piv ,�piv ) has no equal Þxed point under a super-majority
rule k > m. Hence, any Þxed point under rule k > m must be unequal. Finally, consider
majority rule k = m. Note that

�i (g) = g for g $ vm! 1 and i < m;

�i (g) > g for g < vm+1 and i > m.

Because�m is continuous, �m(vm) = vm, and �m(g) > g for g < vm, we have �piv (g) =

�m(g) for g slightly less than vm. By similar logic, �piv (G) = �m(G) for G slightly greater
than vm. Hence, by Claim 1, for G slightly greater than vm,

�piv (�piv (G)) = �m(�m(G)) > G.

It follows that under rule k = m, �piv (�piv (G
"
)) = G

" for some G

" # (G,maxi {G#
i } ] .

Nested equilibria.For any equilibrium outcome (ĝ,

ˆ

G),

ˆ

G " �piv (
ˆ

G) =

ˆ

G " ĝ = �piv (ĝ) " ĝ.

Suppose (ĝ

"
,

ˆ

G

"
) is another equilibrium outcome, and assume without loss of generality

that ˆ

G" ĝ $ ˆ

G

"" ĝ

". BecauseG" �piv (G) is strictly increasing in G and �piv (g)" g is strictly
decreasing in g (as both�i and �i have a slope strictly less than 1 for all i), we must have
ˆ

G >

ˆ

G

" and ĝ < ĝ

", which contradicts the initial assumption.

Equilibrium uniqueness.Unanimity. Because any agent can delay a decision under the
unanimity rule, (ĝ,

ˆ

G) is an equilibrium only if for all i

ĝ ' �i (
ˆ

G); and ˆ

G $ �i (ĝ).

By part 1 of Claim 2, we obtain ˆ

G " ĝ $ G

#
i " g

#
i and, hence, either ˆ

G $ G

#
i or ĝ ' g

#
i .

Suppose ˆ

G $ G

#
i . Consider any waiting region (g

"
, G

"
) that strictly contains (ĝ,

ˆ

G). By part
2 of Lemma 2,G#

i = maxg�i (g) and �i is increasing for G > G

#
i . Hence,

G

"
>

ˆ

G $ G

#
i $ �i (g

"
);

g

"
< ĝ ' �i (

ˆ

G) < �i (G
"
).
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In other words, agent i strictly prefers adopting ↵ before G

" and � before g

". By similar
logic, the same is true when ĝ ' g

#
i . Because giveng" every agent i strictly prefers to adopt

↵ before G

", (g"
, G

"
) cannot be an equilibrium. As all equilibria must be nested, (ĝ,

ˆ

G) is
unique.

Homogeneous time preference. When all agents have the same discount rate, their
one-sided best response functions do not cross. In this case,�piv (á) = �2m! k(á) and �piv (á) =
�k(á). To prove uniqueness, we need to show that (�m! k ,�k) has a unique unequal Þxed
point. For majority rule k = m, it follows from Claim 1 that (�m ,�m) has a unique un-
equal Þxed point at (g#

m , G
#
m). Consider super-majority rule k > m. By Claim 1 and part 3

of Lemma 2, if G < G

#
2m! k we have

�k(�2m! k(G)) > �2m! k(�2m! k(G)) $ G.

Because�k(g) ' G

#
k for any g, if G > G

#
k we have

�k(�2m! k(G)) < G.

Given that both �

"
2m! k(G) and �"

k(�2m! k(G)) are strictly positive and less than 1 for G #
(G

#
2m! k , G

#
k), �k(�2m! k(G)) " G is strictly decreasing in that range. Hence, there exists a

unique G

" # [G

#
2m! k , G

#
k ], such that �k(�2m! k(G

"
)) = G

".

Homogeneous static preference. When all agents have the samevi , the pivotal best-
response functions are given by the best-response functions of the agent with the k-
th most impatient agent. Uniqueness follows Claim 1, which establishes that the best-
response functions of any single agent has a unique unequal Þxed point at the Wald-
optimal thresholds.

Proof of Proposition 2 . Let i be an impatient agent. Assume that i ' m. The case in
which i $ m can be treated symmetrically. Pick any " ' (0, vm+1 " vm). By part 3 of
Lemma 2 there existsr(") such that for any ri $ r(") and G ' vm+1, we have�i (G) > G" ".

For all agents j $ m + 1, �j (G) = G if G < vm+1. Thus, �piv (G) $ �i (G) if G < vm+1.
Given that vm + " < vm+1, we have

�piv (vm + ") $ �i (vm + ") > vm + " " " = vm .

For all agents j ' m, �j (g) = g if g > vm. Thus, �piv (g) = g if g > vm. This, together
with the displayed inequality above, implies that

�piv (�piv (vm + ")) = �piv (vm + ") < vm + ",

where the last inequality follows because �piv (G) < G for any G > vm.
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We have already shown in the proof of equilibrium existence in Proposition 1 that
�piv (�piv (G

"
)) > G

" for G

" slightly above vm. Therefore, there is an upper threshold ˆ

G #
(G

"
, vm + ") that satisÞes the equilibrium condition. Furthermore, because ˆ

G < vm+1,
�piv (

ˆ

G) $ �i (
ˆ

G). Therefore, ˆG " �piv (
ˆ

G) ' ˆ

G " �i (
ˆ

G) < ". The equilibrium waiting region
is no wider than ".

Finally, the fact that vm # (ĝ,

ˆ

G) is a general property of any equilibrium under major-
ity rule; see the proof of Proposition 6.

Proof of Proposition 3 . Because(g#
i , G

#
i ) is the unique unequal Þxed point of (�i ,�i ), by

part 1 of Proposition 4 below, G

#
i " g

#
i decreases inri . Therefore, there existsr̃(") such that

G

#
i " g

#
i $ " for any agent i with ri ' r̃(").

Suppose the equilibrium waiting region is (ĝ,

ˆ

G) and the number of agents with ri $
r̃(") is strictly less than the number of requisite swing votes under rule k. Then, there
must be at least one agent with ri < r̃(") who both votes for ↵ at ˆ

G and votes for � at ĝ.
Suppose by way of contradiction that ˆ

G " ĝ < ". Then, for an agent with ri < r̃("), we
have ˆ

G " ĝ < " ' G

#
i " g

#
i . But for such (ĝ,

ˆ

G), by part 1 of Claim 2, either @ui/@g < 0 or
@ui/@G > 0. This agent cannot both vote for ↵ at ˆ

G and vote for � at ĝ, a contradiction.

Proof of Proposition 4 . Part 1. We show that the width of the waiting region in the most
and least patient equilibria increases whenever �piv shifts up or �piv shifts down.

Let (ĝ, ˆG) be the Þxed point of (�piv ,�piv ) in the most patient equilibrium. Let (g

"
, G

"
)

be the Þxed point of (�piv ,
˜

�piv ) in the most patient equilibrium, where ˜

�piv (g) $ �piv (g)

for all g. We have
˜

�piv (�piv (
ˆ

G)) " ˆ

G $ �piv (�piv (
ˆ

G)) " ˆ

G = 0.

In the proof of equilibrium existence in Proposition 1, we have shown that ˜

�piv (�piv (G)) "
G < 0 for G that is sufÞciently large. Because multiple equilibrium thresholds are nested,
G

" is the largest solution to ˜

�piv (�piv (G)) " G = 0. It follows that G

" $ ˆ

G. Furthermore,
G" �piv (G) is increasing in G because the slope of�i (G) is less than1 for every i. Therefore,

G

" " g

"
= G

" " �piv (G
"
) $ ˆ

G " �piv (
ˆ

G) =

ˆ

G " ĝ.

Similar reasoning applies to the least patient equilibrium and to the case when �piv shifts
down.

Because�piv (g; k
"
) $ �piv (g; k) and �piv (G; k

"
) ' �piv (G; k) for k

"
> k, the width of the

equilibrium waiting region is increasing in k both in the most patient equilibrium and in
the least patient equilibrium. Similarly, a decrease in ri shifts up �i and shifts down �i .
As a result, �piv also shifts up and �piv shifts down (weakly). The waiting region in the
most patient and the least patient equilibria becomes wider.

Part 2. Let C denote a subset ofk agents. The upper and lower pivotal functions for
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the group Cunder the unanimity rule are �#(g) & maxi 'C �i (g) and �#(G) & mini 'C �i (G),
respectively. Let (g#, G#) denote the unique unequal Þxed point of (�#,�#).

In the original game with 2m " 1 agents,�piv (g) ' �#(g) for all g and �piv (G) $ �#(G)

for all G under rule k, regardless of the preferences of the agents outsideC. Recall that
the width of the waiting region in the most patient equilibrium increases whenever �piv

shifts up or �piv shifts down. Because(g#, G#) is the unique, and hence most patient, Þxed
point of (�#,�#), we have

ˆ

G " ĝ ' G# " g#,

for any Þxed point (ĝ,

ˆ

G) of (�piv ,�piv ).

Part 3. An increase in k, a decrease in the common discount rate r, or more diverse
preferences in a symmetric jury shifts up �piv and shifts down �piv . Thus, ˆG " ĝ increases.
From the proof of Lemma 1, the equilibrium cutoffs must satisfy these Þrst-order condi-
tions:

vk " ĝ " f(r,

ˆ

G " ĝ) = 0,

f(r,

ˆ

G " ĝ) " ˆ

G+ v2m! k = 0.

Adding these two equations implies that ĝ +

ˆ

G = vk + v2m! k = 2vm, which is Þxed. Thus,
ˆ

G must increase and ĝ must fall.

Proof of Proposition 5 . From the proof of part 3 of Proposition 4 for a symmetric com-
mittee, the equilibrium waiting region under super-majority rule k > m, (ĝ, ˆG), strictly
contains the equilibrium waiting region under majority rule m, (g#

m , G
#
m). Further, both

waiting regions are centered at vm.

Consider any ✓0 # [g

#
m , G

#
m ]. Instead of writing the utility of agent j as a function of the

cutoffs g and G, we can deÞnec = (g+G)/2 and y = G " g to express utility as a function
of the center and the width of the waiting region. Using the formula in the text, and after
some re-arrangement, we obtain:

uj (g,G | ✓0) =
1

1 + e

! 0

q̃j (c, y; ✓0)

q(y)

;

where

q̃j (c, y; ✓0) =

*
e

vj
e

R1(! 0 ! c)
+ e

c
e

R2(! 0 ! c)
+
e

! R1y/ 2 "
*
e

c
e

R1(! 0 ! c)
+ e

vj
e

R2(! 0 ! c)
+
e

! R2y/ 2

e

! R1y/ 2 " e

! R2y/ 2
,

q(y) = e

! R1y/ 2
+ e

! R2y/ 2
.

Note that c = vm under both majority rule and super-majority rule. Moreover, the width
of the equilibrium waiting region under majority rule, denoted y

#, is smaller than that
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under super-majority rule, denoted ŷ. At ✓0 = vm, the utility of agent j is

uj (g,G | vm) =
1

1 + e

vm

e

vj
+ e

vm

q(y)

.

The function q(y) is decreasing for y < y

# and increasing for y > y

#. Sinceŷ > y

#, we have
uj (g

#
, G

# | vm) > uj (ĝ,
ˆ

G | vm) for all j. By continuity, there is a region containing vm such
that uj (g

#
, G

# | ✓0) > uj (ĝ,
ˆ

G | ✓0) for all j and all ✓0 in this region.

Proof of Proposition 6 . From Lemma 2, part 1, and from the deÞnition of the pivotal best-
response functions,

�piv (g; k)

,
> g if g < vk ,

= g if g $ vk ;
�piv (G; k)

,
< G if G > v2m! k ,

= G if G ' v2m! k .

Because an equilibrium pair of thresholds (ĝ,

ˆ

G) is an unequal Þxed point, we must have
ˆ

G = �piv (ĝ) > ĝ. This implies that ĝ < vk , which means that if � is adopted when the
belief hits ĝ, at least 2m " k agents (including agents k to 2m " 1) must prefer � to ↵ at
the current belief. Similarly, the upper threshold must satisfy ˆ

G > v2m! k , which implies
that at least 2m " k agents (including agents 1 to 2m " k) must prefer ↵ to � when ↵ is
adopted. For k = m, we must have vm # (ĝ,

ˆ

G), which implies that equilibrium outcomes
respect the static preferences for a majority of voters.

Fix the discount rates of all agents and Þx the static preferences ofk " 1 agents. We
prove that there exists v such that if vi ' v for i ' 2m " k, then ˆ

G < v2m! k+1. By part 2
of Lemma 2, �piv (g) goes to minus inÞnity as g goes to minus inÞnity. Therefore, we can
deÞneg" such that

�piv (g) < v2m! k+1, for g < g

"
.

By part 3 of Lemma 2, �i (v2m! k+1) goes to minus inÞnity as vi goes to minus inÞnity.
Therefore, there existsv such that, for i ' 2m " k, if vi ' v then �i (v2m! k+1) ' g

". Under
decision rule k, at least one agent from the group { 1, . . . , 2m " k} must vote for � in order
for � to be adopted by the group. Therefore, �piv (v2m! k+1) ' g

". This, together with the
displayed inequality above, implies that

�piv
*
�piv (v2m! k+1)

+
< v2m! k+1.

Recall from the proof of equilibrium existence in Proposition 1 that for any x < v1,
�piv (�piv (x)) " x is strictly positive. Therefore, there exists ˆ

G # (x, v2m! k+1) that satis-
Þes�piv (�piv (

ˆ

G)) " ˆ

G = 0. BecauseˆG < v2m! k+1, we have ˆ

G < vi for all i $ 2m " k. All
thesek " 1 agents prefer � to ↵ when ↵ is adopted.
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Proof of Proposition 7 . We prove the proposition for the case where the lower cutoff is
constrained. The proof of the other case is similar.

If �piv (G) $ vm, then �c
piv (G) = min{�piv (G), vm} = vm. Since�piv (vm) > vm, we have

�

c
piv (vm) = �piv (vm). This proves that (vm ,�piv (vm)) is an unequal Þxed point of (�c

piv ,�
c
piv )

if �piv (�piv (vm)) $ vm and �piv (vm) > vm.

Conversely, (vm ,�piv (vm)) cannot be an unequal Þxed point of (�

c
piv ,�

c
piv ) if either

�piv (�piv (vm)) < vm or �piv (vm) ' vm. If �piv (�piv (vm)) < vm, then �

c
piv (�piv (vm)) =

�piv (�piv (vm)) < vm. Recall that �piv (vm) $ vm for all kD $ m. Hence, �piv (vm) = vm

if �piv (vm) ' vm. But then (vm , vm) is not unequal.

Finally, �piv (vm) > vm holds only when kD > m. For any rule kD > m,

�piv (�piv (vkD )) = �piv (vkD ) < vkD .

It follows that if (vm ,�piv (vm)) is an unequal Þxed point of (�

c
piv ,�

c
piv ), then

�piv (�piv (vm)) $ �

c
piv (�piv (vm)) = vm .

Hence, (�piv ,�piv ) must have an unequal Þxed point (ĝ,

ˆ

G) with ĝ # [vm , vkD ). At this
equilibrium outcome, at most m agents prefers� at ĝ. Furthermore, since�c

piv (g) $ �piv (g)

and �c
piv (G) ' �piv (G), the same reasoning as in the proof of Proposition 4 establishes that

the waiting region is wider under the constrained two-stage decision process.

Proof of Proposition 8 . Suppose (ĝ,

ˆ

G) is an equilibrium in the one-stage deliberation
game with rule k = kD . Suppose agent j is pivotal for the upper cutoff in this equi-
librium. For any Þxed g, the best response of agentj diverges to inÞnity as rj goes to
zero. Becauselimr j $ 0 R1 = 0 and limr j $ 0 R2 = 1, we have

lim

r j $ 0
f(rj , G " g) = lim

r j $ 0
log

R2e
R1(G! g) " R1e

R2(G! g)

R2 " R1
= 0.

The sign of @uj /@G depends only on the sign of vj " g " f(rj , G " g). This implies that, for
any g < vj , limr j $ 0 @uj /@G > 0 for any G. Thus G must increase without bound as rj goes
to 0. A similar argument establishes that g must decrease without bound as the pivotal
agent for the lower cutoff has a discount rate that goes to 0. Finally, since f(r,G " g) is
monotone increasing in r (proof of Lemma 2, part 3), there exists r such that ˆ

G > v2m! 1

and ĝ < v1 whenever ri ' r for all agents i.

Next, we show that such (ĝ,

ˆ

G) is an equilibrium outcome of the two-stage decision
process with any decision rule kd. We Þrst note that it is an equilibrium for each agent i

to vote for ↵ if ✓ $ vi and to vote for � otherwise, because↵ is preferred to ßipping a coin
(which is in turn preferred to �) whenever ✓ $ vi , while � is preferred to ßipping a coin
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(which is in turn preferred to ↵) whenever ✓ < vi . Given such equilibrium second-stage
strategy, and given the fact that ˆ

G > v2m! 1, ↵ will be adopted with unanimous support for
any kd if the belief reaches the upper cutoff. Likewise, � will be adopted with unanimous
support for any kd if the belief reaches the lower cutoff.

In the Þrst stage, suppose each agenti adopts the strategy (gi , Gi ) = (�i (
ˆ

G),�i (ĝ)). As
ri goes to 0, we have Gi > v2m! 1 for every i. Given this Þrst-stage strategy, the span of
control IG

(�! i ) for any agent i over the upper cutoff is above v2m! 1. Similarly, the span of
control for any agent over the lower cutoff is below v1. For any decision rule kd which is
non-unanimous, it is not feasible for any agent to unilaterally deviate to obtain an indeci-
sive outcome, given the strategy proÞle of other agents. Furthermore, it is not proÞtable
to unilaterally deviate to delay or hasten the adoption of either alternative, because (ĝ,

ˆ

G)

solves the constrained maximization problem 1 for the one-stage problem. If the decision
rule kd is unanimous, it is feasible for an agent to deviate by changing his thresholds in
the Þrst stage and withholding his support for an alternative in the second stage to ob-
tain an indecisive outcome. But doing so is worse than just changing the thresholds in
the Þrst stage and voting sincerely in the second stage, because an indecisive outcome is
worse than ↵ for any ✓ # I

G
(�! i ), and is worse than � for any ✓ # I

g
(�! i ). Since the latter

deviation is unproÞtable, deviation to force ßipping a coin cannot be proÞtable for any
belief within an agentÕs span of control.
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