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Abstract

We study dynamic monopoly pricing of storable goods in an environment where demand changes
over time.

The literature on durables has focused on incentives to delay purchases. Our analysis focuses on
a different intertemporal demand incentive. The key force on the consumer side is advance purchases
or stockpiling. In the case of storable goods the stockpiling motive has been documented in recent
empirical literature. We show that, in this environment, if the monopolist cannot commit, then
prices are higher in all periods, and social welfare is lower, than in the case in which the monopolist
can commit. This is in contrast with the analysis in the literature on the Coase conjecture.



1 Introduction

A large literature in industrial organization examines the dynamics of firm behavior. Most of
this literature ignores consumers’ intertemporal incentives. For many goods, such as durable and
storable goods, however, intertemporal incentives on the consumer side are potentially important.
A specific kind of intertemporal demand incentive generated by durability has attracted a lot of
attention: the incentive for consumers to postpone purchases in the expectation of better deals in
the future. This effect emerges most starkly in the Coase conjecture (Coase 1972, Bulow 1982, Gul,
Sonneschein, and Wilson 1986) where durability and intertemporal demand incentives combine to
generate a striking prediction: if consumers are patient, or transactions can occur quickly, and the
monopolist lacks the ability to commit, the power of the monopolist to extract surplus is completely
undermined, and the monopoly distortion disappears. Although many papers in this literature de-
liver less extreme outcomes (e.g., Sobel 1991), a consistent picture has emerged: when goods are
durable, monopoly power may not be as bad as in the textbook model because lack of commit-
ment undermines monopoly power. In principle, this literature has powerful policy implications
concerning the desirability of regulation and antitrust policy in durable goods industries.

In this paper we show that an alternative - empirically relevant - intertemporal demand in-
centive can lead to exactly the opposite conclusions concerning the consequences of commitment.
Specifically, we consider an environment in which consumers have the incentive to store in the
expectation of higher future prices. This is a demand anticipation motive rather than the demand
postponement incentive which is the focus of the durable goods literature. Recent empirical studies
(e.g., Pesendorfer 2002 Hendel and Nevo 2004a) have documented that purchasing patterns re-
spond to the timing of price changes in a way consistent with demand anticipation.1 This evidence
pertains mostly to groceries, but there are many other goods for which it is plausible to think that
demand anticipation is relevant (e.g. oil and various intermediate goods, see Hall and Rust 2000
for a detailed study).

We study monopoly pricing in the presence of demand anticipation. Specifically, in our model,
goods are storable and demand varies deterministically over time. We compare the equilibrium
when the monopolist can commit to the equilibrium when the monopolist cannot commit. We
show that lack of commitment leads to higher prices in all periods, lower welfare, and higher
wasteful storage, than if the monopolist could commit. Thus, the monopolist’s inability to commit
worsens distortions in the presence of demand anticipation. This result is in stark contrast with
the results in the literature on the Coase conjecture.

To gain an initial intuition for our main result, consider a world with two periods where con-
sumers’ demand goes up in the second period. Suppose that the marginal cost of storage is constant
and is smaller than the difference between the static monopoly prices. If the monopolist charged
the static monopoly price in each period, consumers would have an incentive to purchase in the first
period for consumption in the second period. In the equilibrium with commitment the monopolist
counters this demand anticipation motive by announcing current and future prices to ensure that
consumers do not store. The intuition is that the monopolist makes sure that consumers pay in the
second period what they would otherwise spend for storage, allowing the monopolist to capture the

1See also Aguirregabiria (1999), Erdem, Imai, and Keane (2003), Hendel and Nevo (2004b).

1



increased surplus. Relative to static monopoly prices, under commitment, the monopolist raises
the first period price and lowers the second period price: the possibility of storage reduces the price
increase.

Suppose now that the monopolist cannot commit to future prices. Note first that the com-
mitment solution is no longer an equilibrium. If consumers did not store in the first period the
monopolist would have an incentive to raise the price toward the static monopoly price in the
second period. This points to the direction in which lack of commitment pushes the monopolist,
namely, to raise the second period price relative to the case of commitment. This increase in second
period prices leads to positive storage. By affecting storage, every increase in the second period
price leads to a loss in the profit margin proportional to the difference between second and first
period prices. When the monopolist can commit, this effect is taken into account, leading to overall
lower prices and storage, and higher profits and welfare. When the monopolist is unable to commit
to a moderate second period price, it resorts to a high first period price as the only available tool
to lower wasteful storage. The first period price (as well as the second period price) is then higher
than under commitment.

The analysis of this paper may lead to a more cautious evaluation of contracts that enhance
a firm’s commitment ability: the policy advice that emerges from the literature on the Coase
conjecture is to be suspicious of contractual arrangements, such as rental or leasing contracts, that
enhance commitment since these may restore monopoly power, and lead to higher prices and lower
welfare. In contrast, in our model, enhancing a monopolist’s ability to commit may lead to lower
prices and reduce wasteful storage.

In Section 2 we present a simple two period example to highlight the basic logic of the result. In
Section 3.1 we present the general model, in Section 3.2 we state the main result of the paper and
provide an outline of the logic of the result. While most proofs are in the Appendix, in Sections 3.3
and 3.4 we offer a more formal analysis of equilibrium in the two commitment scenarios. Section
4 discusses the related literature. Section 5 discusses the robustness of our results and argues that
demand anticipation may be relevant in durable goods markets, and our analysis may also apply
to such markets.

2 A Linear Example

We first present a simple two period example with linear demand to convey the intuition for the basic
effect. In order to highlight the role of storability and commitment we compare monopoly prices
in three cases. We first present the unconstrained monopoly problem, namely, static monopoly
prices without storage by consumers. We then solve the monopoly problem allowing for storage
and commitment to future prices. This involves a no-arbitrage constraint that limits the difference
between the prices in the two periods. Finally, we study the case where consumers can store but
the monopolist cannot commit. In this last case the monopolist suffers from both the storability
(no-arbitrage) and no-commitment (or perfection) constraints.

Assume that there are no costs of production throughout and that the interest rate is zero. The
demand in the first period is

D1(p1) = 100− p1.
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The demand in the second period is

D2(p2) = 200− p2.

With no constraints the firm maximizes

p1D1(p1) + p2D2(p2) (1)

by charging prices pm1 = 50, p
m
2 = 100, and earning 50 (50) + 100 (100) = 12, 500.

Assume that consumers can store the product in the first period for consumption in the second
period: storing S units costs c(S) = 10S.

Since prices cannot differ by more than the marginal cost of storage, the possibility of storage
effectively constrains the firm’s intertemporal pricing problem. Plugging the no arbitrage constraint
p2 = p1 + 10, the firm’s objective function under commitment becomes:

V C (p1) = p1D1(p1) + (p1 + 10)D2(p1 + 10). (2)

Profits are maximized at pc1 = 70 and p
c
2 = p

c
1 + 10 = 80 leading to profits of (50 + 20) (50− 20) +

(100− 20) (100 + 20) = 12, 500−400−400 = 11, 700, with a loss of 800 (400 in each period) caused
by the inability of the firm to equate the marginal revenues across the two periods.

The solution under commitment involves no storage. Every stored unit causes a loss of 10 to
the monopolist since it implies a sale at p1 instead of p2. By slightly lowering p2 the monopolist
can ensure that no storage takes place, giving rise to a discontinuous increase in profits. Thus, it
cannot be the case that storage is positive.

Finally, we come to the case in which the firm cannot commit to future prices. How does the
objective function change now to incorporate the commitment constraint? In period 2 the firm will
face a residual demand curve of D2(p2)−S = 200− p2−S. Profits p2 (D2(p2)− S) are maximized
at p2 (S) = (200− S) /2.

Since under commitment S = 0 and p2 = 80, we can immediately see that the commitment
solution is not an equilibrium absent commitment: given S = 0, the monopolist would set p2 (0) =
100.

Equilibrium storage is determined so as to induce the monopolist to raise the price in the
second period by 10. Given p1, if the agents store too little, then the firm responds by choosing
p2 > p1 + 10, but then a larger storage would be optimal. If agents store too much, then the firm
responds by choosing p2 < p1 + 10, against which the agents would prefer to store nothing. Thus,
equilibrium storage S(p1) must induce p2 (S (p1)) = p1+10. Using the optimal second period price
p2 (S) = (200− S) /2 and p2 = p1 + 10 we find equilibrium storage: S(p1) = max{0, 180− 2p1}.

We can write the new optimization problem in either of two ways. First, we can simply recognize
that sales increase in the first period by the inventory amount and decrease in the second period
by the same amount. So the objective function with both arbitrage and perfection constraint
incorporated is

V NC (p1) = p1 (D1 (p1) + S(p1)) + (p1 + 10) (D2 (p1 + 10)− S(p1)) . (3)
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This can be simplified by canceling the term S(p1)p1 to obtain

V NC (p1) = p1D1 (p1) + (p1 + 10) (D2 (p1 + 10))− 10S(p1). (4)

This expression could also be obtained directly by recognizing that the cost of holding storage is
ultimately a cost that comes out of the seller’s pocket since consumers break even in the storage
decision. By comparing equation (4) with equation (2), we see that the third term is exactly the
cost of the lack of commitment.

Solving the maximization problem in equation (4) yields pnc1 = 75 and so pnc2 = 85. Equilib-
rium storage is 30. Plugging into (4), profits become (50 + 25) (50− 25) + (100− 15) (100 + 15)−
10 (30) = 12, 500 − 625 − 225 − 300 = 11, 350. So the perfection constraint costs an extra 350.
There is a cost of 50 because prices are set too high (both prices rise by five and while this puts
the second period price closer to the unconstrained optimum, it makes the first period price, which
was already too high, even higher). In addition, there is a cost of 300 because of storage, as 30 of
the units consumed in the second period are sold at pnc1 instead of pnc2 .

All the analysis in this Section was undertaken for cases in which, absent commitment, in equi-
librium inventory is positive. However, if in the example the demand increase was less pronounced,
for example D2(p2) = 140− p2, then prices would be 55 and 65 without the perfection constraint
and 60 and 70 with it. However, while the distortion causes both a profit and a welfare loss the cost
of inventory is just enough so that the firm chooses the first period price in a way that will cause
no inventory to be held. As a consequence the second period price is equal to the uncostrained
monopoly price, while the first period price is higher.

If we made the difference in the demands smaller a similar result would occur, until we reduced
second period demand to 120− p2 or less, at which point the storability constraint would not bind
because the cost of inventory is too high for storage to affect the monopolist’s optimal behavior.

3 General Analysis

We now present the general model to show that the basic force highlighted in the example is quite
general. We first state our basic assumptions. We provide an outline of the logic of the result,
and then go into more detail on the characterization of equilibrium under both commitment and
no-commitment.

3.1 The model

A monopolist faces demand for a storable good in each of T periods. For simplicity we assume that
costs of production are zero and that there is no discounting.

Demand in each period t comes from a unit measure of identical consumers2 whose utility is
quasi-linear in the consumption of the good, xt, and money mt: Ut (xt,mt) = ut (xt) + mt. We
assume that each ut is continuously differentiable.

2The assumption of identical consumers is made for convenience. The main result is unaffected by heterogeneity.
Furthermore, if storage is undertaken by competitive arbitrageurs, the equilibria we characterize only depend on the
sequence of aggregate market demands, independently of the sequence of individual preferences that generate it.
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We assume that the cost of storage is linear: c(S) = cS.3 Storage can be equivalently thought
of as undertaken by consumers or by competitive arbitrageurs.

At each date t, given any sequence of prices pt, ..., pT and the current inventory St−1, consumers

choose purchases qt, consumption levels xt and storage levels St to maximize
TP
i=t
[Ui(xi,mi)− qipi−

cSi] subject to qi = xi + Si − Si−1.
Let Dt (pt) be the static demand function associated with Ut, i.e., the maximizer of ut (q)− qpt.

Denote revenue in period t by Rt(pt) = Dt(pt)pt, marginal revenue in period t by MRt(pt), and
the static monopoly price at period t (the maximizer of Rt (p)) by pmt .

Assumption 1. For each t, Rt (·) is concave and t-times differentiable.4
Assumption 2. Dt(max

τ
{pmτ }) > 0 for every t.

Assumption 3. c < max
1≤t≤T−1

{pmt+1 − pmt }.

Assumption 2 ensures that in equilibrium consumers consume a positive quantity at every date.5

Assumption 3 is a non triviality assumption that ensures that storage matters.

In order to characterize the equilibrium, optimal storage decisions must be defined for all possible
prices. Period t storage decisions can in principle depend on the sequence of all future prices.
However, in equilibrium, the storage decision of the consumer at period t only depends on the
prices at periods t and t+ 1. Specifically, if

(i) pt+1 − pt < c then St = 0;
(ii) pt+1 − pt = c, then consumers are indifferent. As we will see, in this case St is defined in

equilibrium by taking into account the monopolist’s response to storage.
We will show below that cases (i) and (ii) are the only possible outcomes in equilibrium. If

instead (out of equilibrium) pt+1 − pt > c, then St is chosen to satisfy demand from period t + 1
up to the next period in which consumers purchase, namely, until the next period τ in which the
price pτ is lower than the cost of buying now and storing until period τ (pt+ c (t− τ)). The details
for this case are provided in the appendix.

3.2 Main Result and Argument Outline

We first state the main result of the paper comparing commitment and no-commitment. We then
provide an outline of the argument and intuition for the result within the context of increasing

3This assumption allows for a sharper characterization but it is not essential for the main result. We briefly
discuss the case of convex cost of storage in the Concluding Remarks. Depreciation is an alternative cost of storage
which is also wasteful if production costs are positive. We investigated the case of depreciation and our main result
is unchanged.

4Although concavity of revenue may seem uncontroversial, it does rule out some important cases. For a discussion
of interesting consequences of nonconcavities in revenues, see for instance Johnson and Myatt (1993). For most of
the analysis we only need revenues to be continuously differentiable. Higher order differentiability is only required to
prove differentiability of equilibrium storage without commitment, which is a convenient, but not essential, element
of our proofs.

5 If Assumption 2 is not satisfied, the monopolist may not offer positive quantities in some periods. Dealing with
this possibility is straightforward but tedious. Nothing of substance is affected by this assumption.
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demand. Under increasing demand and small c, the problems are easy to characterize. In the next
sections we show the generality of the result. The details of the proof are in the appendix.

We will use superscript c on equilibrium variables under commitment and superscript nc for
those under no-commitment.

Proposition 1 For all t, pct ≤ pnct and Sct ≤ Snct : prices and storage are uniformly lower under
commitment. Profits and consumer surplus are higher under commitment.

We now provide a brief outline of the argument proving that equilibrium prices are always lower
under commitment.

As a first step, it is useful to start by going back to the example in Section 2 and obtain some
more general insights for the two period problem. By comparing equations (2) and (4) we obtain

V NC (p1) = V
C (p1)− S (p1) c. (5)

It is easy to see that this equation does not depend in any way on the specific demand functions.
Thus, equation (5) holds generally, implying, as we saw in Section 2, that the seller’s profits in
the two commitment scenarios only differ by S (p) c, which can be interpreted as the cost of the
perfection or credibility constraint. As shown later, storage S (p1) is a decreasing function.6 Thus,
the firm that is unable to commit (who maximizes V NC) has an incentive to raise p1 beyond pc1 (the
optimal price under commitment); namely, the incentive to reduce storage. Hence, equation (5)
implies that pnc1 > pc1. Since, as we saw in Section 2, prices rise by c per period in both scenarios,
this also implies that pnc2 is higher than pc2.

7

We now discuss the relation between marginal revenues in the two scenarios because it will
be convenient in comparing prices in the two scenarios in the general case. Absent storage, the
monopolist would choose pm1 and pm2 so that MR1 (pm1 ) = MR2 (p

m
2 ) = 0. If instead storage is

binding, the storage constraint implies p2 = p1+ c. Under commitment, optimal pricing is formally
identical to price discrimination under costly arbitrage. The first period price p1 is set so that that
all units that are purchased in period 1 are used exclusively for consumption in period 1, namely
so that S = 0. This requires p2 = p1 + c. The optimal price, pc1 maximizes the sum of revenues
TR1 (p1)+TR2 (p1 + c). Thus, MR1 (pc1) +MR2 (p

c
1 + c) = 0. This is a necessary condition in the

general case (T periods and arbitrary demand sequences), we will prove this formally in Lemma 2.
Without commitment, the monopolist chooses p2 (S) to maximize (D2 (p2)− S) p2. Since

p2 (0) = p
m
2 , we cannot have an equilibrium with zero storage, unless c is high.

8 However, storage is
costly for the monopolist because it involves selling units for second period consumption at a price

6This will be proved in the appendix but it is natural to expect that storage declines when the price of buying for
storage goes up.

7For the case of T periods with always binding storage constraints, it can be easilty shown that

V NC (p1) = V
C (p1)−

T−1X
τ=1

Sτ (p1 + (τ − 1) c) c.

Since each Sτ−1 function is decreasing, we obtain that pnc1 > pc1, and hence, all prices are higher without commitment.
8This is roughly because p1 = pm2 − c which, for small c the first period price is very far from the optimal first

period price. Thus, the monopolist is better off lowering p1 and accepting some storage.
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of p1 instead of p2. Consumers’ incentives to store increase in the expected p2. Thus, the monopolist
would like to guarantee a low enough p2. However, absent commitment such a guarantee would not
be credible and consumers expect the seller to choose the price that is optimal for a given S. Thus,
lacking ability to assure a low p2, the monopolist is left with p1 as the only tool to discourage
storage. From equation (5) and the previous discussion concerning commitment, we see that the
marginal value of raising p1 is given by MR1 (p1) +MR2 (p1 + c) − cdS1dp1

. Since, as shown below,
dS1
dp1

< 0, at an optimal price without commitment, MR1 (pnc1 ) +MR2 (p
nc
1 + c) = c

dS1
dp1

< 0. This,
combined with the previous discussion for the case of commitment implies that

MR1 (p
nc
1 ) +MR2 (p

nc
1 + c) < MR1 (p

c
1) +MR2 (p

c
1 + c)

Since MRt are decreasing functions, this inequality implies that absent commitment prices are
higher in both periods.

In the general T period model, similar reasoning will allow us to conclude that implications of
the necessary conditions for equilibrium are:

TX
t=1

MRt (p
c
t) = 0 (6)

and
TX
t=1

MRt (p
nc
t ) = c

TX
t=1

dSt
dpt

¯̄̄̄
pt=pnct

< 0. (7)

Thus,
TX
t=1

MRt (p
nc
t ) <

TX
t=1

MRt (p
c
t) . (8)

In one special case, this inequality immediately allows us to conclude that prices under commit-
ment are always lower than without commitment. This is the case in which pmt is increasing and
storage constraints are always binding (which is guaranteed if there is a sufficiently small storage
cost). In this case, pt = p1 + (t− 1) c. Thus, inequality (8) can be rewritten as

TX
t=1

MRt (p
nc
1 + (t− 1) c) <

TX
t=1

MRt (p
c
1 + (t− 1) c) .

SinceMRt is decreasing for each t, it must be the case that pc1 < p
nc
1 . Since in both scenarios prices

increase by c per period, prices must be lower under commitment in all periods.

In the general case, when prices may go down (due to demand reductions), and hence stor-
age is not always binding, the problem is more delicate. We are still able to conclude thatPT
t=1MRt (p

nc
t ) <

PT
t=1MRt (p

c
t). The problem is that, in equilibrium, storage constraints may

be binding for different sets of periods in the two scenarios.
Section 3.3 and 3.4 provide the essential steps for a characterization of equilibrium under the

alternative commitment scenarios. These sections prove that equation (6) holds in general in the
commitment scenario and equation (7) holds in general in the no commitment scenario. The proof
of Proposition 1 is in the Appendix.
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3.3 Equilibrium conditions under commitment

Intuition suggests that, under commitment, we can view the monopolist’s problem as a maximiza-
tion subject to a “storage-proof” constraint: the sequence of prices must be chosen to ensure zero
storage; i.e., prices increases by no more than c per period. The first Lemma shows that this
intuition is correct.

Lemma 1 In an equilibrium with commitment pct+1 ≤ pct + c. Furthermore, Sct = 0 for all t.

The proof is in the Appendix but the logic of this Lemma is similar to the one discussed in
the Example in Section 2. Storage St involves purchases at price pt for consumption in subsequent
period t0 at effective prices of pt + (t0 − t) c. But the monopolist can sell the same units in period
t0 at a higher profit by choosing a price of pt0 = pt + (t0 − t) c thereby capturing the storage cost.

Because of Lemma 1, the commitment problem boils down to the choice of a price sequence
{pt}Tt=1 to maximize

TX
t=1

Dt(pt)pt (9)

subject to
pt+1 ≤ pt + c for all t = 1, ..., T − 1. (10)

Lemma 2 There is a unique sequence of equilibrium prices under commitment. This sequence is
identified by the first order conditions of the maximization of (9) subject to (10). Furthermore a
necessary condition for the price sequence {pct}Tt=1 to be the equilibrium under commitment is given
by equation (6)

TX
t=1

MRt(p
c
t) = 0. (11)

We emphasize that we have only provided necessary conditions for equilibrium. These are
enough for the purpose of making a comparison between the two scenarios. However, condition (6)
is not sufficient for an equilibrium. Many price sequences satisfy (6). For instance, consider the
demand functions discussed in Section 2: D1(p1) = 100−p1 and D2(p2) = 200−p2. Prices p1 = 80
and p2 = 70 satisfy condition (6) but they do not constitute an equilibrium with commitment. In
a WebAppendix we provide a simple algorithm to construct the equilibrium.

3.4 Equilibrium conditions without commitment

We now study equilibrium conditions without commitment. We do not explicitly construct the
entire equilibrium sequence, although it is not difficult to do so. We will instead obtain necessary
conditions for equilibrium. This is all that is required in order to compare the two scenarios.

Consider an equilibrium price sequence {pnct }Tt=1 without commitment. We will break the price
sequence into monotonic subsequences. If between period t and period t + 1, the “storage-proof”
constraint is not binding (that is, the equilibrium price either decreases, or increases by less than
c), then we can think of the equilibrium as being made of two locally independent sequences:
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the sequence up to t and the sequence following t. Let (T1, ..., Tm) be a sequence of dates, with
1 ≤ T1 ≤ ... ≤ Tm ≤ T such that for each i, pncTi + c < p

nc
Ti+1

, i.e., storage is not binding between
periods Ti and period Ti + 1.9

Note that STi = 0 for every i, and that for each subsequence {Ti + 1, ..., Ti+1} we can construct
the local necessary equilibrium conditions by working backwards from period Ti+1 to Ti+1 without
worrying about the rest of the game. We will then piece together all these conditions in order to
make a comparison with the case of commitment.

We now consider one specific time interval {Ti−1 + 1, ..., Ti} in which storage binds for at least
two periods.10 We look at the case in which St > 0 along the subsequence. As in the example in
Section 2 this will be the case when c is sufficiently small. It is easy to deal with the case in which
St = 0 even along a nontrivial subsequence.

At any period t given an inherited storage St−1 the firm’s problem is characterized by the
following recursive problem:

Vt (St−1) = max
pt
{(Dt (pt)− St−1 + St (pt)) pt + Vt+1 (St (pt))} (12)

Because period Ti is effectively a terminal period, we have:

VTi (STi−1) = maxpTi
[DTi(pTi)− STi−1]pTi .

The first term on the right-hand side of equation (12) is the revenue from period t sales which
includes storage St for consumption in period t + 1 and the forgone sales due to storage from the
previous period St−1; the second term Vt+1 (St (pt)) represents the revenues from future sales which
are affected by pt via storage St.

The maximization in equation (12) determines a sequence of optimal prices pt (St−1). To com-
plete the picture, we must describe the law of motion of the state variable St. Given the price at
period t, in the equilibrium of the continuation game, storage St (pt) is determined so as to induce
the monopolist to choose pt+1(St) = pt + c. Thus, St (pt) is such that

pt+1 (St (pt)) = pt + c (13)

i.e., the optimal price at period t+1 given St is exactly c higher than pt. Because the price increases
by c every period, consumers are indifferent between any amount of storage, and therefore, they
are willing to store St (pt).

The first order condition for an optimum at period t is then given by

MRt(p
nc
t )− St−1 + St(pnct ) + pt

dSt
dpt

¯̄̄̄
pnct

+
dVt+1(St)

dS

dSt
dpt

¯̄̄̄
pnct

= 0 (14)

9 It can of course be the case that for some i’s, Ti +1 = Ti+1. In this case, the equilibrium price at Ti is the static
monopoly price: pncTi = p

m
Ti
. Furthermore, it is also possible that T1 = Tm = T in which case the storage constraint

is always binding.
10Such a subsequence must exist by Assumption 3. Otherwise storage is never binding.
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Since, by the envelope theorem, dVt+1(St)dS = −pt+1(St (pt)), and in equilibrium, pt+1 (St (pt))−pt = c,
equation (14) can be rewritten as

MRt(p
nc
t ) = St−1 − St(pnct ) + c

dSt(p)

dp

¯̄̄̄
pnct

. (15)

(For periods Ti−1, and Ti, recall that STi−1 = STi = 0.)

We have now concluded our characterization of the necessary conditions for equilibrium along
a price subsequence with binding storage constraints. Note that, by summing equations (15) for
all t between Ti−1 + 1 and Ti we obtain:

TiX
t=Ti−1+1

MRt(p
nc
t ) = c

TiX
t=Ti−1+1

dSt(p)

dp

¯̄̄̄
pnct

(16)

The following Lemma shows that dSt(p)dp ≤ 0 allowing us to conclude that along a price subse-
quence with binding storage constraints, equation (7) holds.

Lemma 3 Consider any pt such that St (pt) > 0. St (pt) is t-times differentiable at pt. Further-

more, dSt(pt)
dpt

¯̄̄
pnct
≤ 0.

This Lemma is proved in the Appendix. It is also easy to see that if instead storage constraints
are nonbinding between periods t and t + 1, the price in period t has to equal the unconstrained
monopoly price pnct = pmt implying that MRt (p

nc
t ) = 0. Furthermore, when storage is nonbinding,

we must have dSt(p)
dp

¯̄̄
pnct

= 0. This means that if we sum over all periods, equation (16) continues

to hold, and we obtain
TP
t=1
MRt(p

nc
t ) < 0. This allows us to compare prices in the two commitment

scenarios.

4 Related Literature

Anton and Das Varma (2005) study a two period duopoly model in which consumers can store first
period purchases. They study the impact of storability on the intertemporal price path. They find
that prices increase over time if consumers are patient and storage is affordable. The low initial
prices are a consequence of the firms’ incentive to capture future market share from their rival. In
contrast to the duopoly case, the demand shifting incentives do not show up under monopoly or
competition. Under these market structures there is no incentive to capture future market share, so
the price dynamics are absent. Jeuland and Narasimhan (1985) present a model in which storability
may allow a monopolist to price discriminate among consumers because of a negative correlation
between demand and cost of storage. Hong, McAfee and Nayyar (2000) is a competitive industry
model, where consumers are assumed to chose a store based on the price of a single item and can
store up to one unit.
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There is a vast literature on durable goods. For a recent survey see Waldman (2003). The
literature that is most related to our paper is the one on the Coase conjecture. This literature
started with Coase (1972). Stokey (1981), Bulow (1982), and Gul, Sonnenschein, and Wilson
(1986) are some of the early papers that provided a formal analysis of Coase’s conjecture.

Sobel (1991) (see also Conlisk, Gerstner, and Sobel 1984, Sobel 1984, and Board 2005) describes
a model of a market with a durable good monopolist in which, at every date a mass of new
consumers enter. Consumers have unit demands and two possible valuations for the good. Sobel
(1991) characterizes the set of equilibria under the assumption that the monopolist cannot commit.
Board (2004) assumes that the monopolist commits and allows for a more general time path of
entry of consumers. An important feature of the analysis in this strand of the literature is the
possibility of price cycles, namely sales. We focus on a different effect (demand anticipation) and
we obtain different results on the effect of commitment.

Nichols and Zeckhauser (1977) study the role of stockpiling by the government (e.g., strategic
oil reserves). The government, as a large player, counters the ability of a monopolistic foreign seller
that charges high prices in periods of high demand. They show that the government can affect the
seller’s behavior in welfare improving ways by undoing price discrimination across the two periods,
and by increasing output through indirect subsidization.11

5 Concluding Remarks

We have shown that when a good is storable and demand changes deterministically over time, a
monopolist always charges higher prices when it lacks ability to commit.

One assumption that we have maintained throughout is linearity of storage costs. In a WebAp-
pendix we provide an analysis of the case with convex cost of storage. When the cost of storage
is strictly convex, there are two main differences relative to the linear case: (i) storage is typically
positive under commitment as well; (ii) There is no longer a simple arbitrage condition linking
prices across periods and we no longer obtain as crisp a comparison between commitment and no
commitment. However, the main result is roubust. We show that prices cannot be uniformly higher
under commitment, and we performed extensive numerical computations with specific functional
forms for demand and cost of storage. In all these computations, our result generalizes.

We have focused most of our analysis on storable goods, i.e. goods that are perishable in
consumption but can be stored for future consumption (e.g., canned foods, laundry detergent,
soft drinks, gasoline...). This provides a particularly stark scenario because in this case, the only
intertemporal demand incentive is the demand anticipation motive. In contrast, the previous litera-
ture on durable goods has focused on environments where the only intertemporal demand incentive
is demand postponement, thereby ruling out the incentives to anticipate purchases. However, de-
mand anticipation may also arise in the case of durables: for instance, consumers may be willing
to buy summer clothes in the Fall if the price is sufficiently low. It is easy to provide examples of
plausible environments in which, just as in this paper, demand anticipation leads to a reversal of
11We have explored the effect of government stockpiling under all possible assumptions on commitment by the

seller and by the government. Stockpiling by the government improves welfare in all scenarios except if the seller
commits and the government does not.
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the Coase result even in the case of durables. More generally, it is likely that in the case of durables,
demand anticipation and demand postponement incentives can be present at different times in the
same market due, for example, to demand seasonality. In these circumstances the overall effect of
commitment on prices and welfare is difficult to assess since it depends on the exact nature of the
cycle. Our analysis suggests that in environments with demand fluctuations, which are common in
many markets, Coase’s stark predictions may be significantly altered.

Appendix
Deferred details on consumers’ optimal storage.
We first obtain optimal storage for a given anticipated sequence of prices {pt}Tt=1 and then adapt

the construction to allow for unanticipated (off-equilibrium) prices. Note that optimal storage can
be multi-valued when consumers are indifferent, in which case, equilibrium storage is pinned down
by equilibrium conditions involving optimization by the firm. Note also that we can bound the set
of relevant prices to be between 0 and maxt {pmt }.

Consider a sequence {pt}Tt=1 of prices expected by consumers, and initial storage S0 = 0. For
every period t define Υt = {τ | min

1≤τ≤t
{pτ + (t − τ)c}} as the set of periods that minimize the cost

of purchasing for period t consumption. If Υt has more than one element, then the consumer is
indifferent between purchases in any period in Υt. By the definition of Υt, period t consumption is
D∗t ≡ Dt(pτ + (t − τ)c) for any τ ∈ Υt. By considering all sets Υt for t = τ + 1, ..., T we can find
Sτ recursively from period 1 onwards. For τ = 1, ..., T − 1,

Sτ ∈

⎡⎣ TX
j=τ+1

I(Υj ,≤ τ)(1− I(Υj , > τ))D∗j ,
TX

j=τ+1

Iτ (Υj ,≤ τ)D∗j

⎤⎦ (17)

where I(Υj ,≤ τ) is an indicator function, that takes on value 1 (0 otherwise) if there is a period
k ≤ τ such that k ∈ Υj , i.e., period j consumption could be optimally purchased in period k ≤ τ .
The maximal quantity that the consumer stores in period τ (the upper bound of the interval in
equation 17) is obtained by adding over all periods j up to T the quantity stored in prior periods
for consumption in period j whenever there is a least cost way to purchase that quantity in periods
prior to (and including) τ . The indicator I(Υj , > τ) takes on value 1 (0 otherwise) if there is a
period k > τ such that k ∈ Υj . To obtain the lowest quantity that the consumer stores in period τ
(the lower bound of the interval in equation 17), we resolve consumer indifference in favor of buying
later. Specifically, the lower bound is attained if the consumer chooses never to purchase in periods
prior to (and including) τ for consumption in period j whenever there is a k > τ such that k ∈ Υj .
In some cases the lower bound and the upper bound are identical so that the interval collapses to
a single point. In this case, optimal storage is uniquely pinned down.

The description of storage above suffices for the case of commitment. However, for the no-
commitment case, we need to specify storage when unanticipated price choices by the monopolist,
and associated changes in conjectured future prices imply that the consumer finds himself with
more or less inventory than optimal relative to this new price sequence. One possibility is that

St−1 is larger than the upper bound in 17. If St−1 ≥
TP
j=t
D∗j , then the consumer does not need to
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buy again, and storage follows the optimal allocation of current inventory to future periods, which
is obtained as the solution of the following maximization:

max
{xk}

TX
k=t

(uk(xk)− c(k − t)xk) (18)

s.t.
TX
k=t

xk ≤ St−1

If instead St−1 <
TP
j=t
D∗j the consumer has to buy at some future date. To find the first period

k with positive purchases, the consumer solves a modified version of the problem discussed before
equation (17) starting in period t. The modification regards the definition of the set Υj , to exclude
purchases prior to t: Υj = {τ |Min

t≤τ≤j
{pτ + (j − t)c}}. Denote by UBjt (LB

j
t ) the upper (lower)

bound for Sj in equation (17) for the problem starting at t. Then, let k be the lowest j such that

UBjt > St−1 −
jP
l=t

D∗l . Prior to k, Sj = St−1 −
j−1P
l=t

D∗l . From k onwards storage in determined as in

equation (17); namely, storage is (and will remain) within the prescribed bounds. If, for some t,
St−1 is lower than the lower bound in equation (17), consider the set Υj for all j > t (as modified

in the previous paragraph). The consumer purchases as soon as LBjt > St−1 −
jP
l=t

D∗l . Up to j the

consumer behaves as prescribed by the maximization in equation (18). After j storage follows the
bounds in equation (17) for the problem starting in period t.

Proof of Lemma 1
Proof. We first prove that, if pct+1 ≤ pct+c for all t = 1, ..., T −1, then Sct = 0 for all t. Consider

an equilibrium price sequence σc = {pct}Tt=1 such that pct+1 ≤ pct + c for all t, and assume by way of
contradiction that storage is positive in some periods. Let τ be the last period such that storage
is positive. Note that, because pct+1 ≤ pct + c for all t, if consumers choose Sτ > 0 it must be that
pcτ+1 = p

c
τ +c. We now show that the following price sequence σ = {pt}Tt=1 is a profitable deviation:

pt = p
c
t for t = 1, ..., τ

pt = p
c
t − (t− τ)ε for t = τ + 1, ..., T

Observe that, under sequence σ, pt+1 < pt+ c for t = τ , ..., T − 1 so that St = 0 for t = τ , ..., T − 1.
Thus, the two price sequences σc and σ generate different profits only after period τ . Specifically,

π(σ)− π(σc) =
TX
t=τ

Dt(pt)pt −
"
TX
t=τ

Dt(p
c
t)p

c
t − cScτ

#
.

Since revenues are continuous, and pt and pct differ by (t − τ)ε,
µ

TP
t=τ
Dt(pt)pt −

TP
t=τ
Dt(p

c
t)p

c
t

¶
is

negligible. On the other hand, cSct is not negligible. This term appears because the lower price
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in period τ + 1 in the deviating sequence leads consumers to purchase in period τ + 1 instead of
storing in period τ . Thus, π(σ)− π(σc) > 0, a contradiction.

The argument to prove that, in an equilibrium with commitment, pct+1 ≤ pct + c for all t
follows a similar logic. Consider an equilibrium price sequence σc = {pct}Tt=1 and assume by way of
contradiction that pct+1 > p

c
t+c for some period. Let τ be the last period such that p

c
τ ≤ pcτ−1+c and

pcτ+1 > p
c
τ +c, and let τ

0 > τ be the latest period such that pct > p
c
τ +(t−τ)c for all t = τ +1, ..., τ 0.

Consumers’ optimal storage decisions imply that Sτ =
τ 0P

t=τ+1
Dt(p

c
τ + (t − τ)c). We now construct

a profitable deviation: a price sequence σ = {pt}Tt=1:

pt = p
c
t for t = 1, ..., τ

pt = p
c
τ + (t− τ)(c− ²) for t = τ + 1, ..., T .

Note that, under price sequence σ, Sτ = 0 for τ = t, ..., T − 1. Moreover, by the way we defined τ 0,
pct − pt ≤ (t− τ)². Finally, the price sequence σ affects profits only after period τ . Thus,

π(σ)− π(σc) =
τ 0X
t=τ

(Dt (pt) pt − pcτDt (pcτ + (t− τ)c)) +
TX

t=τ 0+1

(Dt(pt)pt −Dt(pct)pct) (20)

Because revenues are continuous, and because pt and pct are very close for t > τ 0+1, the second sum
on the right-hand side of equation (20) is negligible. In contrast, the first sum on the right-hand

side of equation (20) is not negligible: it is approximately equal to
τ 0P

t=τ+1
D (pcτ + (t− τ)c) c. Thus,

π(σ)− π(σc) > 0, a contradiction.

Proof of Lemma 2
Proof. Because, by assumption, the revenue functions Rt(p) = Dt(p)p are concave in p, conse-

quence, the constrained problem of maximizing
TP
t=1
Dt(pt)pt under the linear constraints pt+1 ≤ pt+c

for all t = 1, ..., T − 1 has a unique solution. To verify that
TP
t=1
MRt(p

c
t) = 0, consider the La-

grangian function L(p1, ..., pT ,λ1, ...,λT−1) =
TP
t=1
Dt(pt)pt−

T−1P
t=1

λt(pt+1− pt− c), where λ1, ...,λT−1
are the Lagrange multipliers. The associated first order conditions are: MR1(pc1) + λ1 = 0,
MR2(p

c
2) − λ1 + λ2 = 0, ..., MRT (pcT ) − λT−1 = 0. If we sum these over all t’s, the multipli-

ers cancel out and the statement is verified.

Proof of Lemma 3
Proof. Recall that assumption 1 guarantees that for all t, period-t revenues are t-times differ-

entiable. The proof of differentiability proceeds by (backward) induction. Consider first the final
period of an increasing sequence Ti. For pTi−1 < p

m
Ti
−c, it must be that STi−1 (pTi−1) > 0 otherwise

14



the monopolist would choose pTi = p
m
Ti
which is not consistent with equilibrium. For pTi−1 < p

m
Ti
−c

(i.e., whenever storage is positive in equilibrium) STi−1 (pTi−1) is defined by equation (15):

MRTi(pTi−1 + c) = STi−1 (pTi−1) .

Thus, STi−1 has the same order of differentiablity asMRTi(pTi−1+c): it is Ti−1 times differentiable
as long as period Ti revenues RTi are differentiable Ti times.

12 Now assume that St+1 is differentiable
t+1 times. Using the fact that, in an equilibrium of the subgame following period t, pt+1 = pt+ c,
we can rewrite equation (15) for period t+ 1 as

St(pt) ≡MRt+1(pt + c) + St+1(pt + c)− c
dSt+1(pt+1)

dpt+1

¯̄̄̄
pt+c

. (21)

Thus, St is t-times differentiable as long as revenues Rt+1 are t+ 1 times differentiable.
We now show that dSt(pt)dpt

≤ 0. Using equation (21), we can write:

dSt(pt)

dpt
=

d

dpt

Ã
MRt+1(pt + c) + St+1(pt + c)− c

dSt+1(pt+1)

dpt+1

¯̄̄̄
pt+c

!
. (22)

Since the term in parenthesis in the right-hand side of equation (22) is the first derivative of the
period t+1 objective function (see equation 15), we see that the expression on the right-hand side
of equation (22) is the second derivative with respect to pt+1 of the period t+1 objective function.
Thus, because of necessary conditions for optimality, the right-hand side of equation (22) cannot
be positive. We therefore conclude that dSt(pt)dpt

≤ 0 . Furthermore, for any period Ti, the inequality
is strict: recall for t = Ti, MRTi(pTi−1 + c) = STi−1 (pTi−1), so

dSTi−1(p)
dpTi−1

=MR0Ti
¡
pncTi
¢
< 0 because

revenues are concave.

Proof of Proposition 1
We begin by obtaining an additional feature of the equilibrium price sequence. If between period

t and period t+ 1, the equilibrium price either decreases, or increases by less than c, then we can
think of the equilibrium as being made of two (locally) independent sequences: the sequence up to
t and the sequence following t. In other words, if the storage constraint is not binding in period
t, it is as if periods before t and period after t are independent. The following Lemma generalizes
this idea and makes it precise.

Lemma 4 Let T1, T2, ..., Tn be such that 1 ≤ Ti ≤ T − 1, and pcTi+1 < p
c
Ti
+ c. Then,

T1X
t=1

MRt(p
c
t) =

T2X
t=T1+1

MRt(p
c
t) = ... =

TX
t=Tn+1

MRt(p
c
t) = 0.

12Note however that S1 (p1) may not be differentiable at p1 = pm2 − c because for any p1 > pm1 − c, S1 (p1) =
dS(p1)
dp1

= 0, while for pt < pmt+1− c, dSt1(p1)dp1
is typically bounded away from zero. Notice however that the limits from

both the right and the left of dS1(p1)
dp1

exist and are both nonpositive.
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Figure 1:

Proof. Suppose by way of contradiction that
Ti+1P
t=Ti+1

MRt(p
c
t) < 0. Then the monopolist

could increase his profits by decreasing prices slightly for all t = Ti + 1, ..., Ti+1. Similarly, if
Ti+1P
t=Ti+1

MRt(p
c
t) > 0, the monopolist could then increase his profits by slightly increasing prices for

all t = Ti + 1, ..., Ti+1.
The next Lemma links the subsequences of binding storage constraints in the no-commitment

case.

Lemma 5 Let {pnct }Tt=1 be an equilibrium of the game without commitment. Then, for any possible
pair of dates t1, t2,

t2X
t=t1

MRt(p
nc
t ) = c

t2X
t=t1

dSt(p)

dp

¯̄̄̄
pnct

+ St1−1 − St2. (23)

Proof. (15) This is obtained by summing equations (15) over all t = t1...t2.

We are now ready to prove the Proposition.
Proof. Assume by way of contradiction that there exists a sequence of periods t = t1, ..., t2

(with, possibly, t1 = t2) for which pnct < pct for all t = t1, ..., t2 (see Figure). We show that this
implies that there is a profitable deviation under commitment.

Let τ 0 ≤ t1 − 1 be the earliest period such that pnct+1 = pnct + c for all t = τ 0, ..., t1 − 1, i.e., τ 0 is
the first period of a no-commitment sequence with binding storage constraint. Clearly, this implies
that, unless τ 0 = 1, pncτ 0 < p

nc
τ 0−1 + c, and p

nc
t = pnct1 − (t1 − t)c for all t = τ 0, ..., t1 − 1.
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Let τ∗ be the earliest period such that pnct < pct for all t = τ∗, ..., t1. This means that, unless
τ∗ = 1, pncτ∗−1 ≥ pcτ∗−1. Let t = min{τ∗, τ 0} and let t ≥ t1 be the latest period such that pct+1 = pct+c
for all t = t1, ..., t, i.e., t is the latest period of a commitment sequence with binding storage
constraint. This means that, unless t = T , pct = p

c
t1+(t− t1)c for all t = t1, ..., t and pct+1 < p

c
t
+c.13

We now establish that pnct < pct for all t = t, ..., t. We break this step into two parts.
Consider first the periods t = t1, ..., t. The constraints pnct+1 ≤ pnct + c imply that pnct ≤

pnct1 + (t− t1)c. By contradiction, pnct1 < pct1 and, by construction, pct = pct1 + (t− t1)c. These three
inequalities imply that pnct < pct for all t = t1, ..., t.

Consider now the periods t = t, ..., t1−1. If t = τ∗, pnct < pct by the construction. If instead t = τ 0

we can repeat a similar argument to the one offered above. By construction, pnct = pnct1 − (t1 − t)c
for all t = τ 0, ..., t1 − 1. Because pct+1 ≤ pct + c for all t we obtain that pct ≥ pct1 − (t1 − t)c for all
t = τ 0, ..., t1 − 1. Finally, because pnct1 < pct1 by contradiction, pnct < pct for all t = t, ..., t1 − 1.

Observe now that, unless t = 1, pnct < pnct−1 + c. This is obviously true if t = τ 0. If instead
t = τ∗, this is implied by inequality pncτ∗ < p

c
τ∗ , the storage constraint p

c
τ∗ ≤ pcτ∗−1+c, and inequality

pcτ∗−1 ≤ pncτ∗−1.

We now establish that
tP
t=t
MRt(p

c
t) < 0. The equilibrium condition without commitment (23)

implies that:
tX
t=t

MRt(p
nc
t ) = c

tX
t=t

dSt(p)

dp

¯̄̄̄
pnct

+ St−1 − St.

Because either pnct < pnct−1 + c or t = 1, storage St−1 = 0. This and the fact that
dSτ (p)
dp

¯̄̄
pncτ
≤ 0 for

all t imply that
tX
t=t

MRt(p
nc
t ) ≤ 0. (24)

Because for all t, MRt(pt) are decreasing in pt and because pnct < pct for all t = t, ..., t, from
inequality (24) we obtain

tX
t=t

MRt(p
c
t) < 0. (25)

Finally, we have that either t = T or pc
t+1

< pc
t
+ c. We can then use Lemma 4 to obtain

tX
t=1

MRt(p
c
t) = 0. (26)

As a consequence, if t = 1, conditions (25) and (26) are a contradiction. If instead t ≥ 2,
condition (26) and inequality (25) imply that

t−1X
t=1

MRt(p
c
t) > 0. (27)

13 It is possible that t ≤ t2.
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Inequalities (25) and (27) imply that the monopolist could increase his profit by marginally increas-
ing prices pct (by the same amount) for all t = 1, ..., t − 1, and by marginally decreasing them (by
the same amount) for all t = t, ..., t. This contradicts the hypothesis that the sequence {pcτ}Tτ=1 is
an equilibrium with commitment.
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7 Supplemental Appendix

7.1 Convex Cost of Storage

Assume that the cost of storage is a twice continuously differentiable function c (S) with c0 (S) > 0,
c00 (S) > 0, and c (0) = c0 (0) = 0.

Consider any fixed sequence of prices {pt}Tt=1. Suppose that the buyer begins date t with a
stock St−1 of the good. Let St (p1, ..., pT ) be the optimal storage choice by the consumer. The
following Lemma provides a simple characterization of the solution of the buyer’s problem.

Lemma 6 Assume that pt ≤ pmT for all t. Then, at date t ≤ T − 1 the consumer stores quantity
St that solves

c0(St) = max{0, pt+1 − pt}, (28)

consumes
xt = Dt (pt) ,

and purchases bt = Dt (pt) + St − St−1 units.

By Lemma 6, we can write the consumer’s optimal storage decision at period t as a function
of period t and period t + 1 prices only. Denote by St (pt, pt+1) the optimal storage decisions at
period t as defined by equation (28).

7.1.1 Commitment

By Lemma 6, under commitment the monopolist chooses a sequence of prices {pt}Tt=1 to maximize
TX
t=1

[Dt(pt)− St−1(pt−1, pt) + St(pt, pt+1)]pt (29)

with S0(p0, p1) = ST (pT , pT+1) = 0 and St (pt, pt+1) defined by equation (28).
The first order conditions at period t is:

MRt(pt)− St−1(pt−1, pt) + St(pt, pt+1)−
∂St−1(pt−1, pt)

∂pt
(pt − pt−1)−

∂St(pt, pt+1)

∂pt
(pt+1 − pt) = 0.

(30)
Notice first that St(pt, pt+1) might not be differentiable in pt when pt = pt+1. This is because,

for a fixed pt+1,
∂St(pt,pt+1)

∂pt
< 0 if pt < pt+1 and

∂St(pt,pt+1)
∂pt

= 0 if pt > pt+1. Similarly, St(pt, pt+1)
might not be differentiable in pt+1 when pt+1 = pt. Notice however that the limits from both the
right and the left of St(pt, pt+1) exists and are both nonpositive. Finally, notice that if pt 6= pt+1

∂St(pt, pt+1)

∂pt
= −∂St(pt, pt+1)

∂pt+1
.

Summing (30) over t and recalling that S0(p0, p1) = ST (pT , pT+1) = 0 we obtain

TX
t=1

MRt (p
c
t) = 0. (31)
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This equation is the counterpart of equation (7) that we obtained in the case of linear costs of stor-
age. Note however that equation (31) is not as informative: because prices are now not necessarily
rising at a constant rate c, we need T conditions to obtain each price.

7.1.2 No Commitment

The construction of the equilibrium absent commitment is quite similar to the analysis in Section
3. The main difference is that equilibrium storage St (pt) at date t must satisfy

c0 (St (pt)) = max{0, pt+1 − pt}.

Appropriately modifying the analysis of Section (3.4) we obtain that equilibrium is characterized,
at period t, by:

MRt(pt) = St−1 − Snct (pt) + (pnct+1(pt)− pt)
∂Snct (pt)

∂pt

where S0 = SncT (pT ) = 0.
Summing over t we obtain

TX
t=1

MRt(p
nc
t ) =

TX
t=1

Ã
(pnct+1 − pnct )

∂Snct (pt)

∂pt

¯̄̄̄
pnct

!
.

Going through similar steps as in the proof of Lemma 3 we can show that

∂Snct (pt)

∂pt
=

∂2Vt+1
∂p2t+1

1− c00 (Snct )
∂2Vt+1
∂p2t+1

≤ 0.

Because, as in the previous section, we can prove that
∂SncT−1(pT−1)

∂pT−1
< 0, we can conclude thatPT

t=1MRt(p
nc
t ) <

PT
t=1MRt(p

c
t). BecauseMRt are decreasing functions for all t, we can conclude

that prices under commitment cannot be uniformly higher and there is also a sense in which they
have to be lower “on average.”

The problem of comparing prices at each period stems from the fact that both under commit-
ment and without commitment the price sequence is determined by T conditions. Comparison of
prices at each period implies the comparison of T conditions:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

MR1(p
c
1) = −S1(pc1, pc2) + (pc2 − pc1)

∂S1(p1,p2)
∂p1

...

MRt(p
c
t) = St−1(pt−1, pt)− St(pt, pt+1) +

¡
pct − pct−1

¢ ∂St−1(pt−1,pt)
∂pt−1

+
¡
pct+1 − pct

¢ ∂St(pt,pt+1)
∂pt

...

MRT (p
c
T ) = ST−1(pT−1, pT ) +

¡
pcT − pcT−1

¢ ∂ST−1(pT−1,pT )
∂pT−1

for the case of commitment, and

2



⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

MR1(p
nc
1 ) = −S1 + (p2(pnc1 )− pnc1 )

∂Snc1 (p1)
∂p1

...

MRt(p
nc
t ) = S

nc
t−1 − Snct + (pnct+1(pt)− pt)

∂Snct (pt)
∂pt

...
MRT (p

nc
T ) = S

nc
T−1

without commitment.

7.2 Solution Algorithm

In this section we provide an algorithm to solve the problem of choosing a sequence of prices {pct}Tt=1
to maximize

TX
t=1

Dt(pt) (32)

subject to
pct+1 ≤ pct + c for all t = 1, ..., T − 1. (33)

The solution algorithm is based on the following intuition. Consider first the case in which there
is only one period, that is T = 1. In this case, the problem above reduces to the maximization
of static monopoly profits D1(p1)p1. The solution is pc1 = pm1 , where p

m
1 is the static monopoly

price. Consider now the two period problem. If D1(p1) and D2(p2) are such that pm2 > p
m
1 + c, the

constraint (33) becomes binding and pc1 is found by maximizing

D1(p1) +D2(p1 + c). (34)

In particular, pm1 ≤ pc1. If instead D1(p1) and D2(p2) are such that pm2 ≤ pm1 + c, the constraint
(33) is not binding and the price that maximizes (34) is smaller than the static monopoly price pm1 .

This observation can be generalized to many periods. Specifically, if constraint (33) is binding
for the first T1 periods, then the argmax of

T1X
t=1

Dt(p+ (t− 1)c)

is greater than the argmax of
τX
t=1

Dt(p+ (t− 1)c)

for all τ = 1, ..., T1. This statement will be made more precise and proved in Lemma 7 below.
We now introduce some notation and describe the algorithm. Consider an interval of periods

t = t1, ..., t2, with t1 ≤ t2, and let p(t1, t2) be the solution to the equation
t2X
t=t1

MRt(p+ (t− t1)c) = 0. (35)

3



Because the functions MRt(pt) are strictly decreasing in p, this sum is also decreasing in p and
p(t1,t2) is unique.

The algorithm is defined by iterating on i. At the first step of the algorithm consider the prices
p(1, t), with t = 1, ..., T . Let T1 be

T1 = arg max
t=1,...,T

p(1, t). (36)

If the argmax is not unique, let T1 be the greatest. For all t = 1, ..., T1, set pct according to:

pct = p(1, T1) + (t− 1)c. (37)

At the ith+1 step of the algorithm, consider the interval of periods t = Ti+1, ..., T and compute
the prices p(Ti + 1, t). Let Ti+1 be

Ti+1 = arg max
t=Ti+1,...,T

p(Ti + 1, t).

If Ti+1 is not unique, consider the greatest. For each t = Ti + 1, ..., T , set pct according to

pct = p(Ti + 1, Ti+1) + (t− Ti − 1)c.

The algorithm proceeds until, at some iteration, Ti+1 = T .

Remark 1 By construction, the algorithm delivers a unique solution.

Before we prove the correspondence between the solution to the algorithm and the equilibrium
we show that the price sequence obtained with the algorithm satisfies the constraint pct+1 ≤ pct + c.
This allows us to draw an analogy between the Ti’s of this section and those of Lermma (4).

Lemma 7 The sequence of prices {pct}Tt=1 that solves the algorithm satisfies the contraint

pct+1 ≤ pct + c

for all t = 1, ..., T .

Proof. By construction, constraints (33) are satisfied by pct for all t = Ti+1, ..., Ti+1. To prove
that this is true also for pcTi and p

c
Ti+1

, consider for simplicity the first and the second iteration.
Suppose by way of contradiction that p(T1 + 1, T2) > pncT1 + c that is:

p(T1 + 1, T2) > p(1, T1) + T1c. (38)

Because, by definition of p(T1 + 1, T2),

T2X
t=T1+1

MRt(p(T1 + 1, T2) + (t− T1 − 1)c) = 0

4



and because the functions MRt(p) are strictly decreasing, inequality (38) implies that

T2X
t=1

MRt(p(1, T1) + (t− 1)c) > 0. (39)

Recalling that
T2X
t=1

MRt(p(1, T2) + (t− 1)c) = 0

by definition of p(1, T2), inequality (39) implies that p(1, T2) > p(1, T1). This contradicts the
hypothesis that T1 = arg max

t=1,...,T
p(1, t) and concludes the proof.

We now prove that the solution to the algorithm and the solution to the maximization problem
are the same.

Lemma 8 A price sequence {pct}Tt=1 maximizes (32) subject to (33) if and only if it is a solution
of the algorithm.

Proof. Let {pct}Tt=1 be a solution to the maximization of (32) subject to (33). Because both
{pct}Tt=1 and the solution to the algorithm are unique, it is enough to show that {pct}Tt=1 solves the
algorithm.

With the usual notation, let (T1, ..., Tm) be a sequence of dates, with 1 ≤ T1 ≤ ... ≤ Tm ≤ T ,
such that, for each i, pcTi + c < pcTi+1, i.e. storage is not binding between periods Ti and period
Ti+1. Without loss of generality, consider the set of periods t = T1 + 1, ..., T2 and corresponding
prices pct .

We first show that pcT1+1 = p(T1 + 1, T2). This follows immediately from Lemma (4)

T2X
t=T1+1

MRt(p
c
T1+1 + (t− T1 − 1)c) = 0, (40)

and from the definition and uniqueness of p(T1 + 1, T2).
We now show that T2 = arg max

t=T1+1,...,T
p(T1 + 1, t), that is the algorithm breaks the solution

price vector at T2. We break this step in two parts.
Assume by way of contradiction that there exists a τ with T2 + 1 ≤ τ such that pcT1+1 <

p(T1 + 1, τ). Because the functions MRt(pt) are decreasing in pt, equality (40) implies that

T2X
t=T1+1

MRt(p(T1 + 1, τ) + (t− T1 − 1)c) < 0. (41)

Because, by construction,

τX
t=T1+1

MRt(p(T1 + 1, τ) + (t− T1 − 1)c) = 0,

5



inequality (41) implies that

τX
t=T2+1

MRt(p(T1 + 1, τ) + (t− T1 − 1)c) > 0. (42)

Notice now that pct ≤ pcT1+1+(t−T1− 1)c for all t = T2+1, ..., T . This holds because p
c
t+1 ≤ pct + c

for all t = T1+1, ..., T − 1. Using pcT1+1 < p(T1+1, τ) we have that p
c
t < p(T1+1, τ)+ (t−T1− 1)c

for all t = T2 + 1, ..., T . Hence, by inequality (42),

τX
t=T2+1

MRt(p
c
t) > 0. (43)

This means that profits could be increased by marginally increasing prices for all t = T2 + 1, ..., τ .
This contradicts the hypothesis that {pct}Tt=1 is an optimal sequence of prices.

Finally, assume by way of contradiction that there exists a τ with τ < T2 such that pcT1+1 <
p(T1 + 1, τ). By definition of p(T1 + 1, τ), this would imply that

τX
t=T1+1

MRt(p
c
t) > 0.

Profits could be increased by marginally increasing prices for all t = T1 + 1, ..., τ . This contradicts
the hypothesis that {pct}Tt=1 is an optimal sequence of prices and concludes the proof.
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