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Abstract

Skill-Biased Technical Change is a shift in the production technology that favors skilled

over unskilled labor by increasing its relative productivity and, therefore, its relative demand.

Traditionally, technical change is viewed as factor-neutral. However, the observed rapid rise in

the relative wage of skilled workers in conjunction with an upward trend in their relative supply

means that recent technological change has been skill-biased. Theories and data suggest that

new information technologies are complementary with skilled labor, at least in their adoption

phase. The direction of technical change–i.e., whether new capital complements skilled or

unskilled labor– may be determined endogenously by innovators’ economic incentives shaped

by relative prices, the size of the market, and institutions. The “factor-bias” attribute puts

technological change at the centerstage of the income distribution debate.
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Skill-Biased Technical Change (SBTC thereafter) is a shift in the production technology that

favors skilled (e.g., more educated, more able, more experienced) labor over unskilled labor by

increasing its relative productivity and, therefore, its relative demand. Ceteris paribus, SBTC

induces a rise in the skill premium—the ratio of skilled to unskilled wages.

From factor-neutral to factor-biased technical change

Economic theory views the production technology as a function describing how a collection

of factor inputs can be transformed into output, and it defines technical change as a shift in

the production function, i.e., a change in output for given inputs. The traditional measure

of economy-wide technological change, introduced by Solow (1957), is aggregate total factor

productivity (TFP, thereafter). Solow defines a TFP advancement as an increase in output

that leaves marginal rates of transformations untouched for given inputs; thus, a change in

TFP is a form of factor-neutral technical change.

For illustrative purposes, suppose that the aggregate production function is constant returns

to scale and Cobb-Douglas in aggregate capital (K) and aggregate labor (L) services, i.e.

Y = ZKαL1−α, where Y is aggregate output, α is the elasticity of output to capital, and

Z denotes precisely TFP. If output and input markets are competitive, then the share of

income going to capital equals α. Solow’s (1957) fundamental insight is that, armed with

this estimate of α and measures of (Y,K,L) from national accounts, neutral technical change

can be quantified “residually”. This clever and parsimonious approach to growth accounting

has dominated the literature for decades, creating an overwhelming consensus that neutral

technological improvements are the primary source of growth in income per capita.

However, a key fact recently emerged from the data highlights the limits of this conceptu-

alization of technical change. In the last three decades, the rental price of skilled labor has

soared dramatically relatively to that of unskilled labor despite a major uprise in the relative

supply of skills: for example, the college wage premium–defined as the ratio between the wage

of college graduates and the wage of high-school graduates– jumped from 1.45 in 1965 to 1.7 in

1995, while the relative supply of college skills tripled over the same period. Given the observed

movements in the relative quantities, these price changes could not be generated by movements

“along the production function”. Neutral technical change is, by definition, silent on changes

in relative prices. Therefore, to make sense of these recent developments, one must introduce

the concept of factor-biased technical change.
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For this purpose, I now generalize the aggregate production function above by letting labor

input, L, be a constant elasticity of substitution (CES) function of skilled and unskilled labor,

Ls and Lu, with factor-specific productivities As and Au:

L = [(AsLs)
σ + (AuLu)

σ]
1/σ

, σ ≤ 1. (1)

At this point, it is not necessary to specify what makes a worker more skilled than another: it

could be education, innate ability or experience. The (log of the) marginal rate of transforma-

tion (MRT) between the two labor inputs is

ln (MRTs,u) = σ ln

(
As

Au

)
+ (1− σ) ln

(
Lu

Ls

)
. (2)

Note that the TFP term Z does not enter the above equation. A change in the ratio As/Au is

a form of factor-biased technical change since it modifies the marginal rates of transformation,

at a given input ratio. In particular, under the empirically plausible parametric assumption

σ > 0, technical change is skill-biased if As/Au increases. With competitive input markets,

the (log of the) skill premium can be read off the right-hand side of (2) as well. Therefore,

skill-biased technical change induces an increase in the relative productivity of skilled labor

that raises its relative demand and, ceteris paribus, the skill premium.

Taking this logic one step further, given an estimate of the elasticity of substitution between

types of labor 1/ (1− σ), and time-series on relative wages and relative factor supplies, one can

measure skill-biased technical change residually from (2). For example, with an elasticity of

substitution of 1.4 (or σ = 0.29) between college graduates and the rest of the labor force, the

dynamics of the U.S. college premium and of the relative supply of college skills imply a growth

of skill-biased technical change (i.e., of the ratio As/Au) in excess of 10 percent per year from

1963-1987 (Katz and Murphy, 1992).

The skill-bias of information technologies

Recent shifts in technology have been skill-biased. But SBTC appears all but an unexplained

residual very much like Solow TFP, a “black box” that needs to be filled with economic content.

What really accounts for this shift in the production process over the past three decades? The

timing of the rise in the skill premium has coincided with the rapid diffusion of information

and communication technologies in the work place. Thus, a natural candidate for this wave of

SBTC is the “information technology revolution”.
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Expenditures in information processing equipment and software, as a share of U.S. private

nonresidential fixed investment, rose from 6% in 1960 to 40% in 2000. At the heart of these dy-

namics there is a staggering improvement in the quality and productivity of all those equipment

goods relying heavily on semiconductors, like computers, software, and switching equipment

underlying much of communication technology.

Ample micro-econometric research and several case-studies document a statistical correla-

tion between the use of new technologies, like computers, and either the employment share of

skilled workers (Bartel and Lichtenberg, 1987) or their wage share (Autor, Katz and Krueger,

1998) across industries. These studies firmly establish that the new technologies are deployed

with better qualified and better paid labor, but they fail to explain why. This deeper question

requires a quantitative theory built around an explicit economic mechanism.

Technology-skill complementarity

A large number of economic models in the literature provides a foundation for SBTC (for

surveys, see Acemoglu, 2002; Aghion, 2002; Hornstein et al., 2005). The central tenet of all

these theories is technology-skill complementarity and takes three alternative formulations.

The first formulation is built on a defining feature of the postwar U.S. economy: the sharp

decline of the constant-quality relative price of equipment investment (Gordon, 1990; Green-

wood et al. 1997), especially evident for information technologies whose prices fell at 10%

per year. Krusell et al. (2000) argue that the substantial cheapening of equipment capital

is the force behind SBTC. This decline in price led to an increased use of equipment capital

in production. At least since Griliches (1969), various empirical papers support the idea that

skilled labor is relatively more complementary to equipment capital than is unskilled labor.

As a result of capital-skill complementarity in production, the faster growth of the equipment

stock pushed up the relative demand for skilled labor and, in turn, the skill premium.

More explicitly, these authors generalize the aggregate production function to:

Y = Kα
s

[
λ [µ (Ke)

ρ + (1− µ) (Ls)
ρ]

σ
ρ + (1− λ) (Lu)

σ
] 1−α

σ
, (3)

where Ks denotes structures capital, and Ke equipment capital. Profit-maximizing behavior of

price-taking firms implies that the skill premium (and the MRT between labor inputs) can be

approximately written as

ln

(
ws

wu

)
' λ

σ − ρ

ρ
ln

(
Ke

Ls

)ρ

+ (1− σ) ln

(
Lu

Ls

)
. (4)
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If σ > ρ, as estimated by Krusell et al., the relative demand for skills increases with the stock

of equipment capital. Note the difference between equations (2) and (4): capital-skill comple-

mentarity gives economic content to the notion of SBTC by replacing an unobserved residual

trend (As/Au) with the actual upward trend in equipment-skilled labor ratio. This model repli-

cates well the dynamics of the U.S. skill premium over the past 40 years. Moreover, historical

evidence suggests that complementarity between skilled labor and capital has characterized

technological developments throughout the entire 20th century (Goldin and Katz, 1998).

The second formulation is inspired by the Nelson-Phelps view of human capital. In the

words on Nelson and Phelps (1966), “educated people make good innovators, so that education

speeds the process of technological diffusion” (page 70). In particular, they contend that more

educated, able or experienced labor deals better with technological change. Skilled workers are

less adversely affected by the turmoil created by major technological transformations since it

is less costly for them to learn the additional knowledge needed to adopt a new technology.

Therefore, rapid technological transitions—such as that witnessed in the past three decades—

are skill-biased, as more able workers adapt better to change (Greenwood and Yorukoglu, 1997;

Caselli, 1999; Galor and Moav, 2000).

Incidentally, this version of the technology-skill complementarity hypothesis, by emphasizing

the importance of learning during episodes of drastic technical change, is consistent with the

TFP slowdown experienced by most developed economies in the 1980s: upon the arrival of the

new information technologies, aggregate productivity can fall temporarily as workers and firms

learn how to deploy the new production methods at their best (Hornstein and Krusell, 1996;

Aghion, 2002).

The Nelson-Phelps conjecture implies that the rise in the skill premium is transitory: it is

only in the early adoption phase of a new technology that those who adapt more quickly can

reap some benefits. As time goes by, there will be enough workers learning how to work with

the new technology to offset the wage differential. Note the difference with the hypothesis set

forth by Krusell et al., where the effect of capital deepening on the skill premium is permanent.

The third formalization of this hypothesis is based on Milgrom and Roberts (1990). These

authors argue that information technologies reduce costs of data storage, communication, mon-

itoring and supervision activities within the firm which trigger a shift towards a new organiza-

tional design. In particular, the layers in the hierarchical structure can be reduced, so that the
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organization of the firm becomes “flatter.” Workers no longer perform routinized, specialized

tasks, but they are now responsible for a wide range of tasks within teams. Therefore, adaptable

workers who have general skills and who are more versed at multi-tasking activities benefits

from this transformation. In other words, the change in technology induces an organizational

shift which is skill-biased. An elegant formalization of this hypothesis is contained in Garicano

and Rossi (2004).

Microeconomic evidence consistent with all these formulations of the technology-skill com-

plementarity hypothesis is offered by Autor, Levy and Murnane (2003). Based on data on

the skill content and tasks of various occupations, they split job requirements into “routine”

and “non-routine” tasks and document that, starting from the 1970s, the labor input of non-

routine analytic and interactive tasks increased sharply relative to routine cognitive and manual

tasks. This shift was concentrated in rapidly computerizing industries and it was pervasive at

all educational levels. They interpret these findings as evidence that information technologies

substituted unskilled labor employed on simple and more repetitive tasks–more amenable to

computerization–and complemented workers endowed with generalized problem-solving, com-

plex communication, and analytical skills.

Endogenous direction of technical change

In the same vein as the endogenous growth literature developed in the 1990s, one could

contend that not only the speed—as traditionally argued—but also the direction of technical

change is endogenous. Profit incentives of innovators determine the amount of R&D activity

directed towards different factors of production (Acemoglu, 1998). The main determinants of

profit incentives are market size, relative prices and institutions. These forces can shed light

on numerous episodes in the history of technology.

Under the assumption that the R&D cost is fixed, the market size of the innovation deter-

mines its revenues. The expansion of educated labor over the postwar period made it profitable

to develop machines complementary to skilled workers. The vast migration wave towards En-

glish cities during the late eighteenth century opened the way to the development of the factory

system and, later, to the Tayloristic assembly line which quickly replaced skilled artisans’ craft

shops. Incidentally, this is a notable example of unskill-bias which proves that, historically, the

direction of technical progress has varied.

Profit maximization dictates that, ceteris paribus, innovation be directed towards those
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factors that are more intensely used in the production of highly priced goods. The recent

burst of North-South trade increased the relative price of skilled-intensive goods in the North

representing yet another force which pushed towards skill-biased innovations in the postwar

period.

Labor institutions that keep wages high despite reductions in productivity induce firms to

direct efforts towards labor-saving technologies. Such a fall in labor demand may explain the

rise in European unemployment, after the upward wage push obtained by the “labor movement”

in the 1970s. The hump-shaped dynamics of the European labor share between 1970 and 1990

validates this conjecture.

The theory of endogenous factor-bias in technology is, potentially, far reaching. The main

limit, at this early stage of development, is the lack of quantitative analysis of the proposed

mechanisms. For example, is the acceleration in the growth of college skills of the 1970s large

enough to generate the observed rise in the productivity of skilled labor and in the skill premium,

under a plausible model calibration? Such questions remain unanswered to date.

To conclude: traditionally, in the growth literature, technological progress is associated

to productivity improvements that benefits all workers and it is viewed as the chief long-

run determinant of average income levels. The notion of “skill-bias”—and the literature that

has recently blossomed around it—has introduced the theoretical possibility that technological

progress benefits only a sub-group of workers, placing technical change also at the centerstage

of the income distribution debate.

Giovanni L. Violante
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