Insurance and Opportunities:
The Welfare Implications of Rising Wage Dispersion

Jonathan Heathcote (Georgetown University)
Kjetil Storesletten (University of Oslo)
Gianluca Violante (New York University)

Money and Banking Workshop, University of Chicago, March 14 2006
Motivation

• Welfare analysis in heterogeneous agents models with incomplete insurance against idiosyncratic risk is central to macroeconomics
Motivation

- **Welfare analysis** in heterogeneous agents models with incomplete insurance against idiosyncratic risk is central to macroeconomics.

- Examples: welfare effects of a...

 1. change in the amount of risk (*technology*)

Motivation

- **Welfare analysis** in heterogeneous agents models with incomplete insurance against idiosyncratic risk is central to macroeconomics.

- **Examples:** welfare effects of a...
 1. change in the **amount** of risk (*technology*)
 2. change in the **insurability** of risk (*markets*)
Motivation

• **Welfare analysis** in heterogeneous agents models with incomplete insurance against idiosyncratic risk is central to macroeconomics

• Examples: welfare effects of a...

 1. change in the *amount* of risk (*technology*)

 2. change in the *insurability* of risk (*markets*)

 3. change in redistributive *policies* (*government*)
 - Long list... related to welfare costs of business cycles (Lucas, 2003)
Contributions

1. Tractable framework delivering *transparent mapping* between primitives of economy (preferences, risk, insurance market structure) and welfare expressions
Contributions

1. Tractable framework delivering transparent mapping between primitives of economy (preferences, risk, insurance market structure) and welfare expressions

2. Role of flexible labor supply: insurance vs. opportunities
Contributions

1. Tractable framework delivering transparent mapping between primitives of economy (preferences, risk, insurance market structure) and welfare expressions

2. Role of flexible labor supply: insurance vs. opportunities

3. Alternative representation of welfare effects based on changes in observable cross-sectional moments
Outline of the Talk

1. Baseline economy with Cobb-Douglas preferences and simple statistical representation of individual risk
 - Equilibrium allocations
 - Welfare expressions for 3 thought experiments
 - Alternative representation for welfare effects

2. Some illustrative calculations

3. Extension to richer process for individual risk
 - Tractability preserved by no-bond-trade equilibrium (Constantinides-Duffie, 1996)

4. Separable preferences
The Economy

- **Demographics and preferences**: Continuum of agents with time-separable preferences

\[
E_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{c_t^n (1 - h_t)^{1-\eta}^{1-\theta} - 1}{1 - \theta} \right)
\]
The Economy

- **Demographics and preferences**: Continuum of agents with time-separable preferences

 \[
 E_0 \sum_{t=0}^{\infty} \beta^t \left(c_t^n (1 - h_t)^{1-\eta} \right) \frac{1-\theta}{1-\theta} - 1
 \]

- **Endowments**: initial wealth is zero for all agents and assets are in zero net supply
The Economy

- **Demographics and preferences**: Continuum of agents with time-separable preferences

\[E_0 \sum_{t=0}^{\infty} \beta^t \frac{c_t^n (1 - h_t)^{1-n} (1 - \eta)_{1-\theta}}{1 - \theta} - 1 \]

- **Endowments**: initial wealth is zero for all agents and assets are in zero net supply

- **Technology**: linear in aggregate hours weighted by efficiency-units of labor
The Economy

- **Demographics and preferences**: Continuum of agents with time-separable preferences

\[E_0 \sum_{t=0}^{\infty} \beta^t \frac{c_t^n(1 - h_t)^{1-\eta}}{1-\theta}^{1-\theta} - 1 \]

- **Endowments**: initial wealth is zero for all agents and assets are in zero net supply

- **Technology**: linear in aggregate hours weighted by efficiency-units of labor

- **Labor market**: competitive, hourly wages equal individual labor productivities
Individual Productivity Shocks

• Two orthogonal log-Normally distributed components

\[\log w = \alpha + \varepsilon_t \]

\[\alpha \sim N \left(-\frac{v_\alpha}{2}, v_\alpha \right), \quad \varepsilon_t \sim N \left(-\frac{v_\varepsilon}{2}, v_\varepsilon \right) \text{ i.i.d.} \]

• Hence:

\[\log w(\alpha, \varepsilon_t) = (\alpha + \varepsilon_t) \sim N \left(-\frac{v}{2}, v \right), \text{ with } E[w] = 1 \]

• We model \(\alpha \) as a permanent individual effect and \(\varepsilon_t \) as i.i.d. shock (Gottschalk-Moffitt, 1994)
Asset Market Structure

• Three distinct structures:

 1. **Autarky**: no financial instruments
Asset Market Structure

- Three distinct structures:

 1. **Autarky**: no financial instruments

 2. **Complete markets**: complete insurance against either component of the wage shock

 - Trade opens before the realization of α
Asset Market Structure

- Three distinct structures:

1. **Autarky**: no financial instruments

2. **Complete markets**: complete insurance against either component of the wage shock
 - *Trade opens before the realization of* α

3. **Incomplete markets**: no insurance against the permanent component of wages, complete insurance against transitory shocks
 - *Trade opens after the realization of* α
Households literally have access to insurance against some shocks, but not others

Incomplete-Markets Economy: Interpretations

- Households literally have access to insurance against some shocks, but not others

- Ex-post complete markets with ex-ante heterogeneous agents
Incomplete-Markets Economy: Interpretations

- Households literally have access to insurance against some shocks, but not others

- Ex-post complete markets with ex-ante heterogeneous agents

- Economy with a non-contingent bond (i.e., “Bewley economy”) where precautionary saving and borrowing allow smoothing shocks that aren’t too persistent
 - Numerical comparison of two economies → good approximation
Properties of Cobb-Douglas Preferences

\[u(c, h) = \frac{c^\eta (1 - h)^{1-\eta}^{1-\theta} - 1}{1 - \theta} \]
Properties of Cobb-Douglas Preferences

\[u(c, h) = \frac{(c^\eta (1 - h)^{1-\eta})^{1-\theta} - 1}{1 - \theta} \]

- Coefficient of relative risk aversion: \(\tilde{\gamma} \equiv 1 - \eta + \eta \theta \)
Properties of Cobb-Douglas Preferences

\[u(c, h) = \frac{c^\eta (1 - h)^{1-\eta}}{1 - \theta} - 1 \]

- Coefficient of relative risk aversion: \(\bar{\gamma} \equiv 1 - \eta + \eta \theta \)

- Frisch labor supply elasticity: \(\phi \equiv \lambda \frac{1-h}{h} \)

 ▶ where \(\lambda \equiv \frac{1-\eta+\eta \theta}{\theta} \) is the Frisch elasticity of leisure

▶ Non-stochastic Frisch labor supply elasticity:

\[\bar{\phi} = \lambda \cdot \frac{1-\eta}{\eta} > 1 - \eta \]
Properties of Cobb-Douglas Preferences

\[u(c, h) = \frac{(c^n(1-h)^{1-n})^{1-\theta}}{1-\theta} - 1 \]

• Coefficient of relative risk aversion: \(\tilde{\gamma} \equiv 1 - \eta + \eta \theta \)

• Frisch labor supply elasticity: \(\phi \equiv \lambda \frac{1-h}{h} \)

▷ where \(\lambda \equiv \frac{1-\eta + \eta \theta}{\theta} \) is the Frisch elasticity of leisure

▷ Non-stochastic Frisch labor supply elasticity:

\[\bar{\phi} = \lambda \cdot \frac{1-\eta}{\eta} > 1 - \eta \]

• \((c, 1 - h)\) substitutes when \(\theta > 1(\lambda < 1) \)
Equilibrium Allocations

• Autarky

\[
\log c_{AUT}(\alpha, \varepsilon) = \log(\eta) + \alpha + \varepsilon
\]

\[
\log l_{AUT}(\alpha, \varepsilon) = \log(1 - \eta)
\]
Equilibrium Allocations

• Autarky

\[\log c_{AUT}(\alpha, \varepsilon) = \log(\eta) + \alpha + \varepsilon \]
\[\log l_{AUT}(\alpha, \varepsilon) = \log(1 - \eta) \]

• Complete markets

\[\log c_{CM}(\alpha, \varepsilon) = \log(\eta) + \lambda(1 - \lambda)\frac{v}{2} + (1 - \lambda)(\alpha + \varepsilon) \]
\[\log l_{CM}(\alpha, \varepsilon) = \log(1 - \eta) + \lambda(1 - \lambda)\frac{v}{2} - \lambda(\alpha + \varepsilon) \]
Equilibrium Allocations

- **Autarky**

 \[
 \log c_{AUT}(\alpha, \varepsilon) = \log(\eta) + \alpha + \varepsilon \\
 \log l_{AUT}(\alpha, \varepsilon) = \log(1 - \eta)
 \]

- **Complete markets**

 \[
 \log c_{CM}(\alpha, \varepsilon) = \log(\eta) + \lambda(1 - \lambda)\frac{\nu}{2} + (1 - \lambda)(\alpha + \varepsilon) \\
 \log l_{CM}(\alpha, \varepsilon) = \log(1 - \eta) + \lambda(1 - \lambda)\frac{\nu}{2} - \lambda(\alpha + \varepsilon)
 \]

- **Incomplete markets**

 \[
 \log c_{IM}(\alpha, \varepsilon) = \log(\eta) + \lambda(1 - \lambda)\frac{\nu_{\varepsilon}}{2} + \alpha + (1 - \lambda)\varepsilon \\
 \log l_{IM}(\alpha, \varepsilon) = \log(1 - \eta) + \lambda(1 - \lambda)\frac{\nu_{\varepsilon}}{2} - \lambda\varepsilon
 \]

- **Individual wealth is always zero**
Welfare Analysis

- ω_m: welfare change of a change in labor market risk $(\Delta v_\alpha, \Delta v_\varepsilon)$

$$\int_{A \times \mathcal{E}} u \left((1 + \omega_m) c_m, h_m\right) d\mathcal{f}(\alpha, \varepsilon) = \int_{A \times \mathcal{E}} u \left(\hat{c}_m, \hat{h}_m\right) d\hat{\mathcal{f}}(\alpha, \varepsilon)$$
Welfare Analysis

- ω_m: welfare change of a change in labor market risk $(\Delta v_\alpha, \Delta v_\varepsilon)$

$$\int_{A \times \mathcal{E}} u ((1 + \omega_m) c_m, h_m) \, df(\alpha, \varepsilon) = \int_{A \times \mathcal{E}} u (\hat{c}_m, \hat{h}_m) \, d\hat{f}(\alpha, \varepsilon)$$

- χ_m: welfare change from completing markets
 $(\Delta v_\alpha = -v_\alpha, \Delta v_\varepsilon = v_\alpha)$

$$\int_{A \times \mathcal{E}} u ((1 + \chi_m) c_m, h_m) \, df(\alpha, \varepsilon) = \int_{A \times \mathcal{E}} u (c_{CM}, h_{CM}) \, df(\alpha, \varepsilon)$$
Welfare Analysis

- ω_m: welfare change of a change in labor market risk $(\Delta v_\alpha, \Delta v_\varepsilon)$

\[
\int_{A \times E} u((1 + \omega_m) c_m, h_m) \, df(\alpha, \varepsilon) = \int_{A \times E} u(\hat{c}_m, \hat{h}_m) \, d\hat{f}(\alpha, \varepsilon)
\]

- χ_m: welfare change from completing markets $(\Delta v_\alpha = -v_\alpha, \Delta v_\varepsilon = v_\alpha)$

\[
\int_{A \times E} u((1 + \chi_m) c_m, h_m) \, df(\alpha, \varepsilon) = \int_{A \times E} u(c_{CM}, h_{CM}) \, df(\alpha, \varepsilon)
\]

- κ_m: welfare change from eliminating risk $(\Delta v_\alpha = -v_\alpha, \Delta v_\varepsilon = -v_\varepsilon)$

\[
\int_{A \times E} u((1 + \kappa_m) c_m, h_m) \, df(\alpha, \varepsilon) = u(\bar{c}, \bar{h})
\]
Welfare Expressions

• Welfare effect of a change in labor market risk

\[\omega_{AUT} \simeq -\bar{\gamma} \frac{\Delta v}{2} \]
\[\omega_{CM} \simeq \bar{\phi} \frac{\Delta v}{2} \]
\[\omega_{IM} \simeq \bar{\phi} \frac{\Delta v_\varepsilon}{2} - \bar{\gamma} \frac{\Delta v_\alpha}{2} \]
Welfare Expressions

• Welfare effect of a change in labor market risk

\[
\omega_{AUT} \simeq -\bar{\gamma} \frac{\Delta v}{2} \quad \omega_{CM} \simeq \bar{\phi} \frac{\Delta v}{2} \quad \omega_{IM} \simeq \bar{\phi} \frac{\Delta v_\varepsilon}{2} - \bar{\gamma} \frac{\Delta v_\alpha}{2}
\]

• Welfare gain from completing markets

\[
\chi_{AUT} \simeq (\bar{\phi} + \bar{\gamma}) \frac{v}{2} \quad \chi_{IM} \simeq (\bar{\phi} + \bar{\gamma}) \frac{v_\alpha}{2}
\]
Welfare Expressions

• Welfare effect of a change in labor market risk

\[\omega_{AUT} \simeq -\gamma \frac{\Delta v}{2} \quad \omega_{CM} \simeq \phi \frac{\Delta v}{2} \quad \omega_{IM} \simeq \phi \frac{\Delta v_\varepsilon}{2} - \gamma \frac{\Delta v_\alpha}{2} \]

• Welfare gain from completing markets

\[\chi_{AUT} \simeq (\phi + \gamma) \frac{v}{2} \quad \chi_{IM} \simeq (\phi + \gamma) \frac{v_\alpha}{2} \]

• Welfare change from eliminating risk, e.g. through progressive taxation system \(\tau(w) = 1 - 1/w \)

\[\kappa_{AUT} \simeq \gamma \frac{v}{2} \quad \kappa_{CM} \simeq -\phi \frac{v}{2} \quad \kappa_{IM} \simeq \gamma \frac{v_\alpha}{2} - \phi \frac{v_\varepsilon}{2} \]
A Caveat

- Fix $\eta = 1/3$, vary θ
- $\bar{\gamma} = 1 - \eta + \eta \theta$
- $\bar{\phi} = \frac{\bar{\gamma}}{\theta}$
Equilibrium cross-sectional moments

- **Closed-form** cross-sectional variances and covariances of the joint distribution of \((w, h, c)\) in IM economy

\[
\begin{align*}
\text{cov} (\log w, \log h) &= \bar{\phi} v_{\varepsilon} \\
\text{var} (\log h) &= \bar{\phi}^2 v_{\varepsilon} \\
\text{var} (\log c) &= v_\alpha + (1 - \lambda)^2 v_{\varepsilon} \\
\text{cov} (\log c, \log h) &= (1 - \lambda) \bar{\phi} v_{\varepsilon}
\end{align*}
\]
Alternative representation of welfare change

- Use cross-sectional moments to map our expression for ω_m into an alternative representation based on “observables”

$$
\omega_m \simeq \Delta cov (\log w, \log h) \\
- \frac{\bar{\gamma}}{2} \Delta var (\log c) - \frac{1}{2\phi} \Delta var (\log h) \\
+ \frac{\bar{\gamma} - 1}{2} \Delta cov (\log c, \log h)
$$

- Alternative approach to welfare calculations
Alternative representation of welfare change

• Use cross-sectional moments to map our expression for ω_m into an alternative representation based on “observables”

$$
\omega_m \simeq \Delta \text{cov} (\log w, \log h) \\
- \frac{\bar{\gamma}}{2} \Delta \text{var} (\log c) - \frac{1}{2\bar{\phi}} \Delta \text{var} (\log h) \\
+ \frac{\bar{\gamma} - 1}{2} \Delta \text{cov} (\log c, \log h)
$$

• Alternative approach to welfare calculations

• Percentage change in aggregate labor productivity

$$
\Delta \log(Y/H) = \Delta \text{cov} (\log w, \log h)
$$
Welfare calculations I

- Preferences: $\eta = 1/3, \theta = 4$
 - Risk aversion coefficient $\bar{\gamma} = 2$
 - Frisch labor supply elasticity $\bar{\phi} = 1$
Welfare calculations I

- Preferences: $\eta = 1/3, \theta = 4$
 - Risk aversion coefficient $\bar{\gamma} = 2$
 - Frisch labor supply elasticity $\bar{\phi} = 1$

- Individual Risk
 - PSID (1968-1997)
 - Residual wage dispersion $v_w : 0.25 \rightarrow 0.35$
 - Transitory component $v_\varepsilon : 0.08 \rightarrow 0.13$
 - Permanent component: $v_\alpha : 0.17 \rightarrow 0.22$
Welfare calculations I

<table>
<thead>
<tr>
<th>Welfare change of rise in wage dispersion</th>
<th>Welfare gain from completing markets</th>
<th>Welfare gain from eliminating risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_{IM}</td>
<td>$\chi_{IM \rightarrow CM}$</td>
<td>κ_{IM}</td>
</tr>
<tr>
<td>-2.47% (-2.50%)</td>
<td>+39.1% (+33.0%)</td>
<td>+16.9% (+15.5%)</td>
</tr>
<tr>
<td>Volat. Level</td>
<td>Volat. Level</td>
<td>Volat. Level</td>
</tr>
<tr>
<td>-7.50% +5.00%</td>
<td>+11.0% +22.0%</td>
<td>+28.5% -13.0%</td>
</tr>
</tbody>
</table>

- “Level” component: increase in aggregate productivity that mitigates the loss
- Bounds: $\omega_{AUT} = -10\%$ and $\omega_{CM} = +5\%$
Welfare calculations I

<table>
<thead>
<tr>
<th>Welfare change of rise in wage dispersion</th>
<th>Welfare gain from completing markets</th>
<th>Welfare gain from eliminating risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_{IM}</td>
<td>$\chi_{IM \to CM}$</td>
<td>κ_{IM}</td>
</tr>
<tr>
<td>-2.47% (-2.50%)</td>
<td>+39.1% (+33.0%)</td>
<td>+16.9% (+15.5%)</td>
</tr>
<tr>
<td>-7.50%</td>
<td>+11.0%</td>
<td>+28.5%</td>
</tr>
<tr>
<td>Level</td>
<td>Level</td>
<td>Level</td>
</tr>
<tr>
<td>+5.00%</td>
<td>+22.0%</td>
<td>-13.0%</td>
</tr>
</tbody>
</table>

- Productivity gain twice as big as insurance gain
Welfare calculations I

<table>
<thead>
<tr>
<th>Welfare change of rise in wage dispersion</th>
<th>Welfare gain from completing markets</th>
<th>Welfare gain from eliminating risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_{IM}</td>
<td>$\chi_{IM \rightarrow CM}$</td>
<td>κ_{IM}</td>
</tr>
<tr>
<td>-2.47% (-2.50%)</td>
<td>+39.1% (+33.0%)</td>
<td>+16.9% (+15.5%)</td>
</tr>
<tr>
<td>Volat. Level</td>
<td>Volat. Level</td>
<td>Volat. Level</td>
</tr>
<tr>
<td>-7.50% +5.00%</td>
<td>+11.0% +22.0%</td>
<td>+28.5% -13.0%</td>
</tr>
</tbody>
</table>

- Policies eliminate also the “good risk”
Welfare calculations II

• Same preference parameters: $\tilde{\gamma} = 2, \tilde{\phi} = 1$
Welfare calculations II

• Same preference parameters: \(\hat{\gamma} = 2, \hat{\phi} = 1 \)

• From PSID data:

\[
\Delta \text{cov} (\log w, \log h) \simeq +0.012
\]

\[
\Delta \text{var} (\log h) \simeq +0.010
\]
Welfare calculations II

• Same preference parameters: $\bar{\gamma} = 2, \bar{\phi} = 1$

• From PSID data:

\[\Delta \text{cov} (\log w, \log h) \simeq +0.012 \]
\[\Delta \text{var} (\log h) \simeq +0.010 \]

• From CEX data:

 – Slesnick (2001), Krueger-Perri (2005), Attanasio-Battistin-Ichimura (2005): $\Delta \text{var} (\log c) \in (0.01, 0.05)$

 – Krueger-Perri (2005): $\Delta \text{cov} (\log c, \log h) \simeq -0.007$

• Result: $\omega = -2.65\%$
Economy with permanent shocks

- Individual risk process: \(\log w_t = \alpha_t + \varepsilon_t \)

- Uninsurable component:

\[
\begin{align*}
\alpha_t &= \pi_t + \psi, \quad \psi \sim N \left(-\frac{v_\psi}{2}, v_\psi \right) \\
\pi_t &= \pi_{t-1} + \omega_t, \quad \omega_t \sim N \left(-\frac{v_\omega}{2}, v_\omega \right) \quad \text{and} \quad \pi_0 = 0
\end{align*}
\]
Economy with permanent shocks

- **Individual risk process:** \(\log w_t = \alpha_t + \varepsilon_t \)

- **Uninsurable component:**
 \[
 \begin{align*}
 \alpha_t &= \pi_t + \psi, \quad \psi \sim N \left(-\frac{v_\psi}{2}, v_\psi \right) \\
 \pi_t &= \pi_{t-1} + \omega_t, \quad \omega_t \sim N \left(-\frac{v_\omega}{2}, v_\omega \right) \text{ and } \pi_0 = 0
 \end{align*}
 \]

- **Insurable component:**
 \[
 \begin{align*}
 \varepsilon_t &= \pi_t^* + \zeta_t, \quad \zeta_t \sim N \left(-\frac{v_\zeta}{2}, v_\zeta \right) \text{ i.i.d.} \\
 \pi_t^* &= \pi_{t-1}^* + \omega_t^*, \quad \omega_t^* \sim N \left(-\frac{v_{\omega^*}}{2}, v_{\omega^*} \right) \text{ and } \pi_0^* = 0
 \end{align*}
 \]
Market Structure: An Island-Economy Interpretation

- At t, agents born onto islands indexed by $\psi, \{\omega_s\}, s = t, \ldots, \infty$

- **Within island:** agents can trade full set of Arrow securities paying one unit of consumption at $t + 1$, for each $(\omega_{t+1}, \omega^*_{t+1}, \zeta_{t+1})$
• At t, agents born onto islands indexed by $(\psi, \{\omega_s\}), s = t, \ldots, \infty$

• **Within island:** agents can trade full set of Arrow securities paying one unit of consumption at $t + 1$, for each $(\omega_{t+1}, \omega_{i+1}^*, \zeta_{t+1})$

• **Between islands:** agents can trade non-contingent bond

• Model nests complete markets $(v_\psi = v_\omega = 0)$ and Bewley economy $(v_{\omega^*} = v_\zeta = 0)$

• Perfect annuity markets
No-bond-trading Equilibrium

• Expected growth in marginal utility of consumption is the same across all islands

• Let $\beta \delta = 1/(1 + \rho)$, then the equilibrium interest rate satisfies:

$$\rho - r^* \simeq \bar{\gamma}(1 + \bar{\gamma})\frac{v_\omega}{2} + \bar{\gamma}(\lambda - 1)\frac{v_\omega^*}{2}$$
No-bond-trading Equilibrium

- Expected growth in marginal utility of consumption is the same across all islands

- Let $\beta \delta = 1/(1 + \rho)$, then the equilibrium interest rate satisfies:

 $$\rho - r^* \simeq \bar{\gamma}(1 + \bar{\gamma}) \frac{v_\omega}{2} + \bar{\gamma}(\lambda - 1) \frac{v_\omega^*}{2}$$

- Constantinides and Duffie (1996) extended to:
 - flexible labor supply
 - groups of population allowed to perfectly pool risk
No-bond-trading Equilibrium

- Expected growth in marginal utility of consumption is the same across all islands

- Let $\beta \delta = 1/(1 + \rho)$, then the equilibrium interest rate satisfies:

$$\rho - r^* \simeq \bar{\gamma}(1 + \bar{\gamma})\frac{v_\omega}{2} + \bar{\gamma}(\lambda - 1)\frac{v_{\omega^*}}{2}$$

- Constantinides and Duffie (1996) extended to:
 - flexible labor supply
 - groups of population allowed to perfectly pool risk

- Same allocations: $c(\alpha_t, \varepsilon_t)$, $l(\alpha_t, \varepsilon_t)$ and zero wealth
Welfare Effect of Change in Labor Market Risk

\[\omega_{IM} = \bar{\phi} \left(\frac{\Delta v_\zeta}{2} + \mu \frac{\Delta v_{\omega^*}}{2} \right) - \bar{\gamma} \left(\frac{\Delta \psi}{2} + \mu \frac{\Delta v_\omega}{2} \right) \]

where the lifetime multiplier \(\mu \) is given by:

\[\mu = \frac{1}{1 - \beta \delta \exp \left((\bar{\gamma} - 1) \left(\bar{\phi} \frac{v_{\omega^*}}{2} - \bar{\gamma} \frac{v_\omega}{2} \right) \right)} \]
Welfare Effect of Change in Labor Market Risk

\[\omega_{IM} = \tilde{\phi} \left(\frac{\Delta v\xi}{2} + \mu \frac{\Delta v \omega^*}{2} \right) - \tilde{\gamma} \left(\frac{\Delta \psi}{2} + \mu \frac{\Delta v \omega}{2} \right) \]

where the lifetime multiplier \(\mu \) is given by:

\[\mu = \frac{1}{1 - \beta \delta \exp \left((\tilde{\gamma} - 1) \left(\frac{\tilde{\phi} v \omega^*}{2} - \tilde{\gamma} \frac{v \omega}{2} \right) \right)} \]

- As households age:
 - Expected labor productivity grows thanks to \(v_{\omega^*} > 0 \)
 - Size of uninsurable uncertainty grows due to \(v_{\omega} > 0 \)
Welfare Effect of Change in Labor Market Risk

\[
\omega_{IM} = \phi \left(\frac{\Delta v_\zeta}{2} + \mu \frac{\Delta v_\omega^*}{2} \right) - \tilde{\gamma} \left(\frac{\Delta \psi}{2} + \mu \frac{\Delta v_\omega}{2} \right)
\]

where the lifetime multiplier \(\mu \) is given by:

\[
\mu = \frac{1}{1 - \beta \delta \exp \left((\tilde{\gamma} - 1) \left(\frac{\phi v_\omega^*}{2} - \tilde{\gamma} \frac{v_\omega}{2} \right) \right)}
\]

• As households age:

 ▶ Expected labor productivity grows thanks to \(v_\omega^* > 0 \)

 ▶ Size of uninsurable uncertainty grows due to \(v_\omega > 0 \)

• With \(\beta = 1 \) and separability (\(\tilde{\gamma} = \lambda = 1 \)): \(\mu = \frac{1}{1-\delta} \)
Separable Preferences

\[u(c, h) = \frac{c^{1-\gamma}}{1-\gamma} - \frac{\varphi h^{1+\sigma}}{1+\sigma} \]

- \(1/\sigma\) is the Frisch (compensated) elasticity of labor supply

- \(\frac{1-\gamma}{\gamma+\sigma}\) is the Marshallian (uncompensated) elasticity of labor supply

- \(\varphi\) measures the relative taste for leisure: WLOG, \(\varphi = 1\)
Incomplete Markets Allocations

\[
\log c(\alpha) = \left(\frac{1 + \sigma}{\sigma + \gamma} \right) \frac{v_\epsilon}{2\sigma} + \left(\frac{1 + \sigma}{\sigma + \gamma} \right) \alpha
\]

\[
\log h(\alpha, \epsilon) = -\left(\frac{\gamma}{2\sigma^2} \frac{1 + \sigma}{\sigma + \gamma} \right) v_\epsilon + \left(\frac{1 - \gamma}{\sigma + \gamma} \right) \alpha + \frac{1}{\sigma} \epsilon
\]

- Individual consumption is increasing in \(v_\epsilon\) and \(\alpha\)

- Insurable shock \(\epsilon\) and uninsurable shock \(\alpha\) have different effects on labor supply decision
Welfare Effects of Change in Labor Market Risk

\[\omega_{CM} \approx \frac{1}{\sigma} \frac{\Delta v}{2} \]

\[\omega_{AUT} \approx -\frac{(\gamma - 1) + \gamma (1 + \sigma)}{\sigma + \gamma} \frac{\Delta v}{2} \]

\[\omega_{IM} \approx \frac{1}{\sigma} \frac{\Delta v_{\varepsilon}}{2} - \frac{(\gamma - 1) + \gamma (1 + \sigma)}{\sigma + \gamma} \frac{\Delta v_{\alpha}}{2} \]
Separable vs. CD Preferences

1. **Productivity gain**: with CD taken only as higher average leisure, with separability taken also as higher average consumption
Separable vs. CD Preferences

1. **Productivity gain**: with CD taken only as higher average leisure, with separability taken also as higher average consumption

2. **Autarky**: with CD there is always a welfare loss, with separability there could be a welfare gain

\[
\omega_{AUT} \simeq - \frac{(\gamma - 1) + \gamma (1 + \sigma)}{\sigma + \gamma} \frac{\Delta v}{2}
\]

- \(\gamma \in [0, 1/(2 + \sigma)] \rightarrow \omega_{AUT} > 0\)

- by continuity, since as \(\gamma \rightarrow 0, \omega_{AUT} \rightarrow \omega_{CM} > 0\)
Welfare Calculations with Separability

Welfare cost of change in wage dispersion
\((\gamma = 2) \)

-0.07
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01
-0.0

Fraction of lifetime consumption

Inverse of Frisch elasticity (\(\sigma\))

0
1
2
3
4
5
6
7
8
9
10

Based on estimates of individual risk
Based on changes in cross-sectional moments

Heathcote-Storesletten-Violante, “Insurance and Opportunities” – p. 29/30
• Tractable equilibrium framework to study consumption and labor supply with partial insurance → analytical solution

• Extensions include:
 ▶ preference heterogeneity/shocks
 ▶ time-varying risk and aggregate uncertainty
 ▶ measurement error in \((c, h, w)\)

• Given panel data on \((w, h)\) (from PSID) and cross-sectional data on consumption (from CEX), we can identify and estimate all the structural parameters of model