Financing Medicare: A General Equilibrium Analysis

Orazio Attanasio
University College London, CEPR, IFS and NBER

Sagiri Kitao
University of Southern California

Gianluca Violante
New York University, CEPR and NBER

Demography and the Economy Preconference
October 12, 2007
The escalation of Medicare costs

Chart B–Social Security and Medicare Cost as a Percentage of GDP

Calendar year

Historical

Estimated

HI + SMI
(including Part D)

OASI + DI

0% 2% 4% 6% 8% 10% 12%

Plan of the paper

- **Question:** What are the macroeconomic and welfare consequences of different financing schemes for Medicare?
Plan of the paper

• **Question:** What are the macroeconomic and welfare consequences of different financing schemes for Medicare?

• **Methodology:**
 - Build a **structural general-equilibrium, overlapping-generations model** of the US economy
 - Parameterize the model based on micro and macro data
 - Simulate US economy for the next 100 years, under different policy scenarios
 - Compute implications for the macroeconomy and for welfare of various demographic groups
Overview of the model

• **Demographics:** OLG of households with uncertain lifetime

• **Working households:** (i) choose consumption/saving and labor supply, and (ii) are subject to labor productivity and health shocks

• **Retired households:** (i) choose consumption/saving, and (ii) are subject to health shocks

• **Technology:** CRS aggregate production function in \((K, L)\)

• **Markets:** Competitive labor, capital (only a risk-free asset) and health insurance markets

• **Government:** (i) progressive taxation, (ii) public debt, (iii) social security, (iv) social assistance (i.e., Medicaid), and (v) Medicare
Demographic structure

- J overlapping generations of households indexed by $j = 1, ..., J$

- Time-varying life-expectancy:
 - Two types of households: low-education and high-education indexed by $e \in \{0, 1\}$
 - Household of type (e, j) at date t survives into age $j + 1$ with probability $\pi_{j,t}^e$
Demographic structure

- \(J \) overlapping generations of households indexed by \(j = 1, \ldots, J \)

- Time-varying life-expectancy:
 - Two types of households: low-education and high-education indexed by \(e \in \{0, 1\} \)
 - Household of type \((e, j)\) at date \(t \) survives into age \(j + 1 \) with probability \(\pi_{j,t}^e \)

- Parameterization: Combine current estimates of age/education specific survival rates with projections on average survival rates by age compiled by SSA
 - Assumption: constant survival differential by education
Survival rates by age and education group

![Graph showing survival rates by age and education group for low and high education groups with data points for 2008 and 2050.]
Health status and medical expenditures

- Households face idiosyncratic fluctuations in health status h driven by Markov chain $\Gamma^j_{h}(h', h)$

- Gross medical expenditures m are random draws from distribution $G^{j,e,h}(m)$
 - Persistence in medical expenditures inherited from persistence in health status

- No feedback from medical expenditures to health status

- No feedback from health status to survival rates
Health insurance

- **Working households** (insurance not a choice):
 - An exogenous fraction is *uninsured*
 - Remaining households are offered *group-insurance* contract covering a fraction $\kappa(m)$ and requiring equilibrium premium p
 - If cash-in-hand falls below \bar{c}, government pays all residual medical expenditures (i.e., *Medicaid*)
Health insurance

- **Working households** (insurance not a choice):
 - An exogenous fraction is uninsured
 - Remaining households are offered group-insurance contract covering a fraction \(\kappa(m) \) and requiring equilibrium premium \(p \)
 - If cash-in-hand falls below \(\bar{c} \), government pays all residual medical expenditures (i.e., Medicaid)

- **Retired households** (insurance a choice):
 - All entitled to Medicare covering a fraction \(\kappa^{med}(m) \) at the fixed premium \(p^{med} \)
 - They can buy additional private insurance on competitive markets covering \(\kappa^{gap}(m) \) at equilibrium premium \(p^{gap} \)
 - Medicaid (as above)
Labor productivity

• **Endogenous labor supply**: key to quantify *distortions* from higher tax rates needed to fund Medicare
Labor productivity

- **Endogenous labor supply**: key to quantify distortions from higher tax rates needed to fund Medicare

- Define a “household hourly wage” W_{it} measured as household earnings divided by household hours worked

\[
\ln W_{ijt} = \ln w_t + \epsilon_j^e + \omega^e(h_{it}) + \eta_{it}^e
\]

 - Equilibrium price of efficiency unit of labor: w_t
 - Age-efficiency profile: ϵ_j^e
 - **Effect of health-status on productivity**: $\omega^e(h_{it})$
 - Idiosyncratic labor productivity shocks: η_{it}^e
Summary: state variables

1. **Age** affects: 1) survival rates, 2) age-earnings profile, 3) medical expenditures, 4) Medicare entitlement, 5) Social Security entitlement

2. **Education** affects: 1) survival rates, 2) age-earnings profile, and 3) labor-productivity shocks

3. **Health status** affects: 1) labor productivity, 2) medical expenditures

4. **Insurance status** (for working households)

5. **Labor productivity shocks** affect: earnings

6. **Cash-in-hand** affects: entitlement to Medicaid
Micro data source: MEPS

- The Household component of the Medical Expenditure Panel Survey (MEPS) is a representative sample of US families.

- Information on: demographic characteristics, health status, use of medical services, expenditures and source of payments, health insurance coverage, income, etc.

- Data from survey year 2004.

- Two-year panel component useful to estimate: 1) health status dynamics and 2) labor income dynamics.
Health status dynamics

<table>
<thead>
<tr>
<th>Age group</th>
<th>Education</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Workers 20-64</td>
<td>26.6</td>
</tr>
<tr>
<td>Retirees 65+</td>
<td>44.8</td>
</tr>
</tbody>
</table>

Percentage of households with bad health
Health status dynamics

<table>
<thead>
<tr>
<th>Age group</th>
<th>Education</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Workers 20-64</td>
<td>26.6</td>
</tr>
<tr>
<td>Retirees 65+</td>
<td>44.8</td>
</tr>
</tbody>
</table>

Percentage of households with bad health

Good Bad

Retirees, Low Edu = \[
\begin{bmatrix}
0.863 & 0.137 \\
0.139 & 0.861 \\
\end{bmatrix}
\]

Retirees, High Edu = \[
\begin{bmatrix}
0.896 & 0.104 \\
0.208 & 0.792 \\
\end{bmatrix}
\]

Transition probabilities across health states
Effect of health status on productivity

Education

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>2.0774</td>
<td>2.5373</td>
</tr>
<tr>
<td></td>
<td>(0.0233)</td>
<td>(0.0519)</td>
</tr>
<tr>
<td>Age</td>
<td>0.0321</td>
<td>0.0457</td>
</tr>
<tr>
<td></td>
<td>(0.0025)</td>
<td>(0.0050)</td>
</tr>
<tr>
<td>Age²</td>
<td>-0.00050</td>
<td>-0.00079</td>
</tr>
<tr>
<td></td>
<td>(0.00006)</td>
<td>(0.00010)</td>
</tr>
<tr>
<td>Bad health</td>
<td>-0.19803</td>
<td>-0.10470</td>
</tr>
<tr>
<td></td>
<td>(0.02060)</td>
<td>(0.03971)</td>
</tr>
</tbody>
</table>

Dependent variable: log hourly wage
Gross health expenditures: means

<table>
<thead>
<tr>
<th></th>
<th>Health status</th>
<th>Education</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Workers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-64</td>
<td>Good</td>
<td>2,105</td>
</tr>
<tr>
<td>20-64</td>
<td>Bad</td>
<td>6,341</td>
</tr>
<tr>
<td>Retirees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65+</td>
<td>Good</td>
<td>5,859</td>
</tr>
<tr>
<td>65+</td>
<td>Bad</td>
<td>11,170</td>
</tr>
</tbody>
</table>

Expenditures are expressed in current dollars (2004)
Gross health expenditures: distribution (65+)

Good Health

Bad Health
Gross health expenditures: source of coverage (%)

<table>
<thead>
<tr>
<th>Source of Coverage</th>
<th>Workers 20-64</th>
<th>Retired 65+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Medicare</td>
<td>4.8</td>
<td>51.0</td>
</tr>
<tr>
<td>Medicaid</td>
<td>11.2</td>
<td>5.7</td>
</tr>
<tr>
<td>Private insurance</td>
<td>55.7</td>
<td>17.0</td>
</tr>
<tr>
<td>Out-of-pocket</td>
<td>19.5</td>
<td>19.3</td>
</tr>
<tr>
<td>Other sources</td>
<td>8.5</td>
<td>6.8</td>
</tr>
</tbody>
</table>

Other sources include payment by other public programs (e.g., community clinics), Workers’ Compensation, Dept. of Veterans Affairs, and Tricare for military.
MEPS vs National Accounts (1999)

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>physician & clinical care</td>
<td>prescr. drugs</td>
<td>nursing home</td>
<td>other serv.</td>
<td>Total Personal Health Care</td>
</tr>
<tr>
<td>all</td>
<td>1,744</td>
<td>1,146</td>
<td>482</td>
<td>447</td>
<td>895</td>
</tr>
<tr>
<td>19-64</td>
<td>1,234</td>
<td>944</td>
<td>393</td>
<td>97</td>
<td>685</td>
</tr>
<tr>
<td>65+</td>
<td>4,132</td>
<td>2,092</td>
<td>900</td>
<td>2,087</td>
<td>1,879</td>
</tr>
</tbody>
</table>

Source: Our own calculation from MEPS and Keehan et al. (2004) for National Accounts

- **Severe misalignment** between MEPS and National Accounts
Health insurance statistics

<table>
<thead>
<tr>
<th></th>
<th>Education Low</th>
<th>Education High</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>32.5</td>
<td>8.9</td>
</tr>
<tr>
<td>Good Health</td>
<td>29.1</td>
<td>7.9</td>
</tr>
<tr>
<td>Bad Health</td>
<td>43.2</td>
<td>16.0</td>
</tr>
</tbody>
</table>

Percentage of uninsured households in working age (20-64)
Aggregate equilibrium targets for 2004

- Health expenditures as fraction of GDP: 16%
- Medicare costs as fraction of GDP: 2.3%
- Social assistance transfers as fraction of GDP: 4%
- Social security outlays as fraction of GDP: 4.2%
- Tax revenues as fraction of GDP: 15.5%
- Capital - output ratio: 3.5
Open issues

- Medicare covers disabled (15% of total Medicare beneficiaries)
Open issues

- Medicare covers disabled (15% of total Medicare beneficiaries)

- Modelling insurance markets: pooling or separating equilibrium (by age, education, health status)?
Open issues

• Medicare covers disabled (15% of total Medicare beneficiaries)

• Modelling insurance markets: pooling or separating equilibrium (by age, education, health status)?

• Medicare Part D ignored (no micro data...)

Attanasio-Kitao-Violante, “Financing Medicare” – p. 20/21
Open issues

• Medicare covers disabled (15% of total Medicare beneficiaries)

• Modelling insurance markets: pooling or separating equilibrium (by age, education, health status)?

• Medicare Part D ignored (no micro data...)

• Projections:
 ▶ Demographics-induced change in health expenditures lower than projections: we need to add cost-inflation
 ▶ Health expenditures determined truly by age or rather by “distance from death”?
Possible policy experiments

- **Benchmark simulation:** increase in Medicare tax needed to finance growth in Medicare costs

- **Additional experiments:**
 - Reduction in Medicare coverage rates $\kappa^{med}(m)$
 - Increase in Medicare premium p^{med}
 - Increase in Medicare entitlement age, or means-tested access to Medicare benefits
 - Pre-funding, e.g. private medical expense accounts