Exercise 1

Consider a pure exchange economy, where time is discrete, indexed by \(t = 0, 1, 2, \ldots \) and continues forever. The economy is populated by 2 individuals with logarithmic preferences and discount factor equal to \(\beta \in (0, 1) \) who trade a nonstorable consumption good \(c_t \). Agents have deterministic endowment streams \(\{ e^i_t \}_{t=0}^{\infty} \) of the consumption good given by

\[
e^i_t = \begin{cases}
0 & \text{if } (t + i) \text{ is even} \\
2 & \text{if } (t + i) \text{ is odd}
\end{cases}
\]

Agents behave competitively. All markets open at time zero and contracts are exchanged specifying how many units of consumption good will be exchanged at each time \(t \) between the two agents. Contracts are perfectly enforceable.

1) Cast the economy into the Arrow-Debreu language. Define an Arrow-Debreu competitive equilibrium and verify that the Welfare Theorems hold.

2) Using the same notation above, solve for the Arrow-Debreu equilibrium allocations, i.e. characterize the equilibrium sequences of prices and allocations of consumption good among agents.

3) Define a Pareto Optimal allocation. Write down the Social Planner’s problem where the Planner gives weight \(\alpha \) to agent 1 and \((1 - \alpha) \) to agent 2. Solve the Planner’s problem for arbitrary weights \(\alpha \in (0, 1) \). Characterize the transfer function that allows to map any Pareto Optimum, for a given weight \(\alpha \), into a competitive equilibrium with transfers among agents.

4) How can you characterize the competitive equilibrium of the original economy by using only the Social Planner problem?

Exercise 2

After having read chapters 7-8-9 of Stokey-Lucas, consider the stochastic growth model of Section 10.1. Write down the Social Planner Problem as a Stochastic Dynamic Programming problem and use the Euler Equation to characterize the allocations. Next, define a Recursive Competitive Equilibrium for this economy and use the Euler Equation and the other equilibrium conditions to characterize the allocations. Show the equivalence between decentralized equilibrium allocations and Planner’s solution.

Remark: throughout the exercise, use Dynamic Programming. No “time subscripts” are admitted!