A Model of the Consumption Response to Fiscal Stimulus Payments

Greg Kaplan
University of Pennsylvania

Gianluca Violante
New York University, CEPR, and NBER

Money-Macro Workshop – Penn, April 20th, 2011
Fiscal stimulus payments (a.k.a. tax rebates)

Frequently used instrument to stimulate spending during recessions
Fiscal stimulus payments (a.k.a. tax rebates)

Frequently used instrument to stimulate spending during recessions

1. **2001**: Under *Economic Growth and Tax Relief Reconciliation Act*, taxpayers entitled to rebate of up to $300 per adult. Total = $38b
Fiscal stimulus payments (a.k.a. tax rebates)

Frequently used instrument to stimulate spending during recessions

1. **2001**: Under *Economic Growth and Tax Relief Reconciliation Act*, taxpayers entitled to rebate of up to $300 per adult. Total = 38b

2. **2008**: *Economic Stimulus Act* provided most households with payments of $300-$600 per adult and $300 per child. Total = 79b

3. **2009**: *American Recovery and Reinvestment Act* provided refundable tax credit up to $400 per adult ("Making Work Pay")
Fiscal stimulus payments (a.k.a. tax rebates)

Frequently used instrument to stimulate spending during recessions

1. **2001**: Under *Economic Growth and Tax Relief Reconciliation Act*, taxpayers entitled to rebate of up to $300 per adult. Total = $38b

2. **2008**: *Economic Stimulus Act* provided most households with payments of $300-$600 per adult and $300 per child. Total = $79b

3. **2009**: *American Recovery and Reinvestment Act* provided refundable tax credit up to $400 per adult (“Making Work Pay”)

Typically: anticipated, temporary, (almost) lump-sum, small
Households **spend about 20%-40% of their stimulus payment in the quarter they receive it in nondurable goods**

Fact and motivation

Households spend about 20%-40% of their stimulus payment in the quarter they receive it in nondurable goods

Violation of the LC-PIH which predicts:

1. Response to temporary income shock is small
2. Response to anticipated income change is zero
Fact and motivation

Households spend about 20%-40% of their stimulus payment in the quarter they receive it in nondurable goods

Violation of the LC-PIH which predicts:

1. Response to temporary income shock is small
2. Response to anticipated income change is zero

Modigliani-Steindel: unless consumers are constrained or impatient
Goal and questions

Build a structural model to study the consumption response to fiscal stimulus payments (no ‘behavioral’ biases)

JPS (2006): “without knowing the full structural model underlying the results, we cannot conclude that future tax rebates will have the same effect"

• What model features account for large response?

• How does the state of the economy affect the size of response?

• How does this fiscal instrument compare to alternatives?
Preview of idea and results

• Baumol-Tobin model of money-demand integrated within life cycle, incomplete markets framework → two assets:

1. liquid asset

2. illiquid asset with higher return but s.t. transaction cost
Preview of idea and results

- **Baumol-Tobin** model of money-demand integrated within life cycle, incomplete markets framework → **two assets**:
 1. liquid asset
 2. illiquid asset with higher return but s.t. **transaction cost**

Consumers **impatient** between adjustments
Preview of idea and results

- Baumol-Tobin model of money-demand integrated within life cycle, incomplete markets framework → two assets:

 1. liquid asset
 2. illiquid asset with higher return but s.t. transaction cost

Consumers impatient between adjustments

Wealthy hand-to-mouth (constrained) agents
Preview of idea and results

- **Baumol-Tobin** model of money-demand integrated within life cycle, incomplete markets framework → **two assets**:
 1. liquid asset
 2. illiquid asset with higher return but s.t. **transaction cost**

Consumers **impatient** between adjustments

Wealthy hand-to-mouth (constrained) agents

- Model’s consumption response to tax rebate is **15% – 27%**
Outline of the talk

1. Micro evidence on consumption response to FSP

2. Life-cycle model with two assets and transaction cost

3. Evidence on households’ holding of liquid and illiquid wealth

4. Results I: consumption response to FSP in the model

5. Results II: other model’s implications
THE MICRO EVIDENCE
The 2001 tax rebate

EGTRRA of 2001 cut lowest tax rate ($\leq 12,000$) from 15% to 10%

Checks corresponding to an “advance refund” for 2001 sent to 92 millions taxpayers between July-September
The 2001 tax rebate

EGTRRA of 2001 cut lowest tax rate ($\leq 12,000) from 15% to 10%

Checks corresponding to an “advance refund” for 2001 sent to 92 millions taxpayers between July-September

Three key features of this tax rebate:

1. **anticipated**: EGTRRA enacted in May

2. **lump-sum**: $600 for married couples ($300 for singles)

3. **randomized timing**: checks mailed out by last 2 digits of SSN
Measuring the response to tax rebates

The CEX added a special module to its quarterly interview in second half of 2001 asking whether rebate was received, when, and how much
Measuring the response to tax rebates

The CEX added a special module to its quarterly interview in second half of 2001 asking whether rebate was received, when, and how much

\[C_{i,t+1} - C_{i,t} = \sum_s \beta_{0s} month_{s,i} + \beta'_1 X_{i,t} + \beta_2 Rebate_{i,t+1} + u_{i,t+1} \]

\[X_{i,t}: \text{age, change in } \# \text{ of adults, change in } \# \text{ of children} \]
Measuring the response to tax rebates

The CEX added a special module to its quarterly interview in second half of 2001 asking whether rebate was received, when, and how much

\[C_{i,t+1} - C_{i,t} = \sum_s \beta_{0s} month_{s,i} + \beta'_1 X_{i,t} + \beta_2 Rebate_{i,t+1} + u_{i,t+1} \]

\[X_{i,t} : \text{age, change in \# of adults, change in \# of children} \]

\[\beta_2 \equiv \text{fraction of rebate check spent in the same quarter it was received (net of response of the control group)} \]

... not exactly a MPC out of the rebate

Kaplan-Violante, "A Model of the Consumption Response to Fiscal Stimulus Payments"
Measuring the response to tax rebates

Estimates of Rebate Coefficient $\hat{\beta}_2$

<table>
<thead>
<tr>
<th></th>
<th>Strictly Nondurable</th>
<th>Nondurable</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001 Tax Rebates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JPS 2006, 2SLS ($N = 13,066$)</td>
<td>0.202 (0.112)</td>
<td>0.375 (0.136)</td>
</tr>
<tr>
<td>MS 2011, 2SLS ($N = 13,066$)</td>
<td></td>
<td>0.385 (0.120)</td>
</tr>
<tr>
<td>MS 2011, IVQR ($N = 13,066$)</td>
<td></td>
<td>0.244 (0.057)</td>
</tr>
<tr>
<td>2003 Child Tax Credit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JPS 2009, 2SLS ($N = 15,069$)</td>
<td>0.020 (0.098)</td>
<td>0.232 (0.124)</td>
</tr>
<tr>
<td>2008 Fiscal Stimulus Payments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSJM 2011, 2SLS ($N = 11,239$)</td>
<td>0.207 (0.087)</td>
<td>0.252 (0.103)</td>
</tr>
</tbody>
</table>

$\hat{\beta}_2$ ranges between 20% and 40% for non-durable consumption
THE MODEL
Model

Demographics: households work until age J^{work} and then live, as retirees, until age J

Preferences: $\sum_{j=0}^{J} \beta^j c_{ij}^{1-\gamma} - 1$

Earnings: heterogeneous age-earnings profiles

$\log y_{ij} = \chi_j + \alpha_i + \phi_i \cdot j + z_{ij}$

where z_{ij} is i.i.d. component interpreted as measurement error

Uncertainty: no aggregate or idiosyncratic risk
Model (contd.)

Two Assets: 1) liquid asset $m_{ij} \geq 0$ with return $R^m \equiv \frac{1}{q^m}$

2) illiquid asset $a_{ij} \geq 0$ with return $R^a \equiv \frac{1}{q^a} > R^m$

Transactions cost: households must pay κ to deposit into or withdraw from illiquid account

Government: satisfies intertemporal budget constraint

$$G + \sum_{j=J^w+1}^{J} \int p(Y_{J^w}) \, d\mu_j + \left(\frac{1}{q^a} - 1 \right) B = \tau^c \sum_{j=1}^{J} \int c_j \, d\mu_j + \sum_{j=1}^{J} \int T(y_j, a_j, m_j) \, d\mu_j$$
Problem of the working household (no adjustment)

State vector: \(s_j = (m_j, a_j, Y_j, \alpha, \psi) \)
Problem of the working household (no adjustment)

State vector: \(s_j = (m_j, a_j, Y_j, \alpha, \psi) \)

\[
V_j^0 (s_j) = \max_{c_j, m_{j+1}} u(c_j) + \beta \max \{ V_{j+1}^0 (s_{j+1}), V_{j+1}^1 (s_{j+1}) \}
\]

subject to:

\[
q^m m_{j+1} + (1 + \tau^c) c_j = y_j - \mathcal{T}(y_j, a_j, m_j) + m_j
\]
\[
q^a a_{j+1} = a_j
\]
\[
m_{j+1} \geq 0
\]
\[
y_{ij} = \exp (\chi_j + \alpha_i + \psi_{ij})
\]
\[
Y_{j+1} = (j Y_j + y_j) / (j + 1)
\]
Problem of the working household (adjustment)

\[V_{j+1}^1 (s_j) = \max_{c_j, m_{j+1}, a_{j+1}} u(c_j) + \beta \max \{ V_{j+1}^0 (s_{j+1}), V_{j+1}^1 (s_{j+1}) \} \]

subject to:

\[q^m m_{j+1} + q^a a_{j+1} + (1 + \tau^c) c_j = y_j - \mathcal{T}(y_j, a_j, m_j) + m_j + a_j - \kappa \]

\[m_{j+1} \geq 0 \]

\[a_{j+1} \geq 0 \]

\[y_{ij} = \exp(\chi_{ij} + \alpha_i + \psi_{ij}) \]

\[Y_{j+1} = (jY_j + y_j) / (j + 1) \]
Example of two-asset economy
Example of two-asset economy

Kaplan-Volante, "A Model of the Consumption Response to Fiscal Stimulus Payments"
Example of two-asset economy
Example of two-asset economy

Kaplan-Violante, "A Model of the Consumption Response to Fiscal Stimulus Payments"
Example of two-asset economy

Kaplan-Violante, "A Model of the Consumption Response to Fiscal Stimulus Payments"
Example of two-asset economy

Example of two-asset economy

Kaplan-Violante, "A Model of the Consumption Response to Fiscal Stimulus Payments"
A wealthy hand-to-mouth household

Consumes the rebate check and does not respond to the news

Cochrane (1989): small welfare gain of smoothing vs κ
Parametrization (quarterly model)

- **Demographics**: $J_{work} = 35$ years and $J = 55$ years

- **Preferences**: $\gamma = 1$ (log utility)

- **Earnings**: heterogeneity in age profiles to match level and growth of earnings inequality over the life cycle

- **Government**: expenditures, debt, tax system and SS system reproduce the key features of US counterpart in 2001
Parametrization (quarterly model)

- **Demographics**: $J_{\text{work}} = 35$ years and $J = 55$ years

- **Preferences**: $\gamma = 1$ (log utility)

- **Earnings**: heterogeneity in age profiles to match level and growth of earnings inequality over the life cycle

- **Government**: expenditures, debt, tax system and SS system reproduce the key features of US counterpart in 2001

- **Set** $\{R^m, R^a, \kappa, \beta\}$ based on micro data on household portfolios

Kaplan-Violante, "A Model of the Consumption Response to Fiscal Stimulus Payments"
SCF EVIDENCE ON LIQUID AND ILLIQUID WEALTH

Kaplan-Volante, "A Model of the Consumption Response to Fiscal Stimulus Payments"
Liquid and illiquid wealth in SCF 2001

- **Sample:** all households 25+, except top 2% of distribution of net worth in order to make SCF and CEX samples comparable
Liquid and illiquid wealth in SCF 2001

- **Sample**: all households 25+, except top 2% of distribution of net worth in order to make SCF and CEX samples comparable

- **Liquid assets**: checking, savings, money market, and call accounts net of revolving credit card balances (6%)

- **Illiquid assets**: net worth minus liquid assets (94%)
 - housing wealth net of all secured debt (38%)
 - retirement accounts (25%)
 - directly held mutual funds (stocks and bonds) (15%)
 - vehicles net of installment loans (7%)

Kaplan-Violante, "A Model of the Consumption Response to Fiscal Stimulus Payments"
Liquid and illiquid wealth in SCF 2001

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>25th pct</th>
<th>50th pct</th>
<th>75th pct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net worth</td>
<td>219,387</td>
<td>16,600</td>
<td>86,650</td>
<td>255,000</td>
</tr>
<tr>
<td>Liquid wealth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid assets</td>
<td>15,412</td>
<td>710</td>
<td>3,200</td>
<td>11,700</td>
</tr>
<tr>
<td>Revolving CC debt</td>
<td>1,390</td>
<td>0</td>
<td>0</td>
<td>450</td>
</tr>
<tr>
<td>Illiquid wealth</td>
<td>205,365</td>
<td>14,600</td>
<td>80,000</td>
<td>235,850</td>
</tr>
<tr>
<td>Housing net of mortgages</td>
<td>85,885</td>
<td>0</td>
<td>39,000</td>
<td>109,000</td>
</tr>
<tr>
<td>Retirement accounts</td>
<td>43,304</td>
<td>0</td>
<td>1,000</td>
<td>32,000</td>
</tr>
<tr>
<td>Directly held MF, stocks, bonds, and T-Bills</td>
<td>33,139</td>
<td>0</td>
<td>0</td>
<td>3,800</td>
</tr>
<tr>
<td>Vehicles net of loans</td>
<td>15,063</td>
<td>4,100</td>
<td>11,100</td>
<td>21,100</td>
</tr>
<tr>
<td>Life Insurance</td>
<td>8,668</td>
<td>0</td>
<td>0</td>
<td>1,000</td>
</tr>
<tr>
<td>CDs</td>
<td>5,449</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Saving Bonds</td>
<td>1,121</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Calibration of asset returns

1. Construct average returns by asset class from 1967-2006:
 - **Checking accounts**: zero nominal return
 - **Money market and savings accounts**: 3 month T-bills
 - **Equity**: CRSP value-weighted portfolio incl dividends
 - **Bonds**: 3 month T-bills
 - **Certificates of deposit**: FRB database
 - **Housing**: NIPA data adjusted for flow of consumption services

2. From observed portfolios in SCF, construct household-specific returns on liquid and illiquid wealth

3. Use resulting cross-sectional mean return (12% and 2.9%)
Calibration (contd.)

- **Asset Returns:**
 - **Illiquid return** After tax real return $r = 6.9\%$
 - (12.0\% nominal, 3\% inflation, 16.5\% tax)
 - **Liquid return** After tax real return $r^m = -0.8\%$
 - (2.9\% nominal, 3\% inflation, 24\% tax)

- **Discount Factor β:** Match median illiquid wealth of $80,000$

- **Transactions Cost κ:** Match median illiquid wealth of $2,400$

Kaplan-Violante, "A Model of the Consumption Response to Fiscal Stimulus Payments"
Estimates of hand-to-mouth households

39% ‘constrained’ in liquid wealth, compared with 11% in net worth

Estimates of hand-to-mouth households

27% wealthy hand-to-mouth households in the SCF

Kaplan-Violante, "A Model of the Consumption Response to Fiscal Stimulus Payments"
Tax rebate experiment

- In quarter $t = 0$, govt announces all households will receive a tax rebate of 500 paid out at either $t = 0$ (group A) or $t = 1$ (group B).

- After 10 years, permanent rise in flat earnings tax.
Rebate coefficient in the model

Rebate coefficient rising with κ (3.7% in one-asset model)

Kaplan-Violante, "A Model of the Consumption Response to Fiscal Stimulus Payments"
Rebate coefficient in the model

Action entirely from constrained agents

Kaplan-Violante, "A Model of the Consumption Response to Fiscal Stimulus Payments"
Rebate coefficient in the model

Median liquid wealth close to SCF for $\kappa \geq $500

Kaplan-Violante, "A Model of the Consumption Response to Fiscal Stimulus Payments"
Rebate coefficients in 2001 environment

Two key features of economic environment in 2001

1. Bush tax cuts (EGTRRA)
 - Unexpected tax reform announced in 2001:Q2 (with rebate), takes effect gradually from 2002:Q1
 - No sunset in 2011

2. Mild 2001-02 recession
 - Unexpected 1.5% decline in earnings, over 3 quarters
 - Followed by 8 quarter recovery
Rebate coefficients in 2001 environment

Tax reform and recession exacerbate liquidity constraints

Kaplan-Violante, "A Model of the Consumption Response to Fiscal Stimulus Payments"
2001 rebate with tax reform & recession ($\kappa = 500$)

Aggregate ND consumption rises by half pct point for two quarters

Effect is very short lived

Kaplan-Violante, "A Model of the Consumption Response to Fiscal Stimulus Payments"
Heterogeneity in rebate coefficients (Misra-Surico)

1. Distribution of consumption responses is bimodal

2. High income households at both end of the distribution
Heterogeneity in rebate coefficients (Misra-Surico)

1. Distribution of consumption responses is **bimodal**

2. High income households at both end of the distribution
Size-asymmetry of responses (Hsieh)

Same households who have large MPC out of 2001 rebate do not respond to (larger) distributions of the Alaskan Permanent Fund.
Size-asymmetry of responses (Hsieh)

Same households who have large MPC out of 2001 rebate do not respond to (larger) distributions of the Alaskan Permanent Fund

Larger rebate \Rightarrow more adjustment \Rightarrow lower consumption response

Kaplan-Violante, "A Model of the Consumption Response to Fiscal Stimulus Payments"
ROBUSTNESS
For reasonable borrowing rates, findings are robust

Kaplan-Violante, "A Model of the Consumption Response to Fiscal Stimulus Payments"
Idiosyncratic risk

If shocks are permanent, findings are robust

Kaplan-Violante, "A Model of the Consumption Response to Fiscal Stimulus Payments"
Conclusions

• Novel mechanism to generate a large fraction of households with illiquid assets and no liquid wealth → wealthy constrained
Conclusions

- Novel mechanism to generate a large fraction of households with illiquid assets and no liquid wealth \rightarrow wealthy constrained

- Model capable of responses to fiscal stimulus payments that are: 1) large, 2) bimodal, 3) size-asymmetric

 ... while being consistent with liquid/illiquid wealth distributions
Conclusions

• Novel mechanism to generate a large fraction of households with illiquid assets and no liquid wealth → **wealthy constrained**

• Model capable of responses to fiscal stimulus payments that are: 1) large, 2) bimodal, 3) size-asymmetric

... while being consistent with liquid/illiquid wealth distributions

• **Extensions:**

 ▶ durable consumption flow from part of illiquid assets

 ▶ automatic deposit/withdrawal into/from illiquid account

 ▶ counterfactual “stimulus policies” and welfare analysis
Consumption dynamics: no adjustment phase

- **Case I**: Positive liquid assets \((m_{t+1} > 0) \)

\[
\frac{1}{c_t} = \beta \frac{1}{c_{t+1}}
\]

Consumption falls at rate \(\beta < 1 \)
Consumption dynamics: no adjustment phase

- **Case I:** Positive liquid assets \((m_{t+1} > 0)\)

\[
\frac{1}{c_t} = \beta \frac{1}{c_{t+1}}
\]

Consumption falls at rate \(\beta < 1\)

- **Case II:** No liquid assets \((m_{t+1} = 0)\)

\[c_t = y_t\]

Borrowing constrained so consumption equals income
Consumption dynamics: adjustment while working

- **Case III:** Date of adjustment \((m_{t+1} = 0)\)

\[
\frac{1}{c_t} = \beta \frac{1}{c_{t+1}} + \lambda_t^{m_{t+1}}
\]

Always optimal to deposit entire cash holdings so \(m_{t+1} = 0\)

Consumption has an “upward jump” between \(t\) and \(t + 1\).

Between two adjustment dates, \(t\) and \(t + j\)

\[
\frac{1}{c_t} = [\beta(1 + r)]^j \frac{1}{c_{t+1}}
\]

Consumption grows at rate \(\beta(1 + r) > 1\)