From Wages to Welfare:
Decomposing Gains and Losses From Rising Inequality

Jonathan Heathcote
Federal Reserve Bank of Minneapolis and CEPR

Kjetil Storesletten
Federal Reserve Bank of Minneapolis and CEPR

Gianluca Violante
New York University, CEPR, and NBER

2010 World Congress of the Econometric Society, Shanghai
Rising wage inequality

Major transformation in the structure of relative wages in the U.S.

1. Increase in the education wage premium

2. Increase in wage dispersion within education groups

 ▶ Both permanent and transitory components ↑
Rising wage inequality

Major transformation in the structure of relative wages in the U.S.

1. Increase in the education wage premium

2. Increase in wage dispersion within education groups
 ▶ Both permanent and transitory components ↑

Among sources of this trend: skill-biased demand shift (technology, trade/offshoring), deunionization, shift in contractual arrangements

Trend in wage inequality from CPS

Variance of Log Wages

College Wage Premium

Male workers aged 25-60. Hourly wage = annual earnings/annual hours
The question

What are the welfare implications of this shift in the wage structure?
Contrasting views of rising inequality
Contrasting views of rising inequality

• Implies lower expected welfare for U.S. households

 (i) Higher permanent wage risk and imperfect risk sharing
Contrasting views of rising inequality

- Implies lower expected welfare for U.S. households
 (i) Higher permanent wage risk and imperfect risk sharing

- Presents new opportunities to U.S. households
 (ii) Higher returns to education and investment in human capital
 (iii) Higher transitory wage volatility and flexible labor supply
Contrasting views of rising inequality

- Implies lower expected welfare for U.S. households

 (i) Higher permanent wage risk and imperfect risk sharing

- Presents new opportunities to U.S. households

 (ii) Higher returns to education and investment in human capital

 (iii) Higher transitory wage volatility and flexible labor supply

Challenge: quantifying the relative importance of these three channels
Two alternative methodologies

Welfare is a function of consumption and leisure, not of wages
Two alternative methodologies

Welfare is a function of consumption and leisure, not of wages

1. Empirical approach
 - Looks directly at shifts in the empirical distribution of consumption and leisure through a social welfare function
 - In comparing distributions, data are demeaned
Two alternative methodologies

Welfare is a function of consumption and leisure, not of wages

1. Empirical approach
 - Looks directly at shifts in the empirical distribution of consumption and leisure through a social welfare function
 - In comparing distributions, data are demeaned

2. Structural approach
 - Uses a model to draw mapping from shift in wage distribution to shift in the distribution of consumption and leisure
 - Allows for relative wage movements to affect mean consumption and mean leisure ("level effects")
THE EMPIRICAL APPROACH
Trend in consumption inequality from CEX

Equivalized consumption expenditures = nondurables, services, small durables and estimated flow from vehicles and housing

Combining CEX Interview Survey (IS) and Diary Survey (DS), one finds larger increase in consumption inequality

Heathcote-Storesletten-Violante, "From Wages to Welfare: Decomposing Gains and Losses From Rising Inequality" – p. 9/30
Trend in leisure/hours inequality from CPS

If leisure is valued, then the distribution of hours worked affects welfare
If leisure is valued, then the distribution of hours worked affects welfare.
Trend in leisure/hours inequality from CPS

If leisure is valued, then the distribution of hours worked affects welfare

\[Leisure = 1 - h^{market} - h^{home}, \]
but \(h^{home} \) is poorly measured

\[\star \text{Aguiar-Hurst (2006), Ramey (2006), Knowles (2009)} \]
Social welfare function

\[W(c, h) = \sum_{j=0}^{J} \int \mu_{ij} U_{ij} di \]

Consumption equivalent welfare change \(\omega \) solves:

\[W((1 + \omega)c^*, h^*) = W(c^{**}, h^{**}) \]
Social welfare function

$$\mathcal{W}(c, h) = \sum_{j=0}^{J} \int \mu_{ij} U_{ij} di$$

Consumption equivalent welfare change ω solves:

$$\mathcal{W}((1 + \omega) c^*, h^*) = \mathcal{W}(c^{**}, h^{**})$$

Assuming $\mu_{ij} = \beta^{-j}$, the social welfare function \mathcal{W} reduces to average period utility in the cross-section:

$$\mathcal{W}(c, h) = \sum_{j=0}^{J} s_j \int u(c_{ij}, h_{ij}) di,$$

Enough to compare distributions of (c, h) before and after the shift
Social welfare function

\[\mathcal{W}(c, h) = \sum_{j=0}^{J} \int \mu_{ij} U_{ij} \, di \]

Consumption equivalent welfare change \(\omega \) solves:

\[\mathcal{W}((1 + \omega) c^*, h^*) = \mathcal{W}(c^{**}, h^{**}) \]

Assuming \(\mu_{ij} = \beta^{-j} \), the social welfare function \(\mathcal{W} \) reduces to

average period utility in the cross-section:

\[\mathcal{W}(c, h) = \sum_{j=0}^{J} s_j \int u(c_{ij}, h_{ij}) \, di, \quad \text{with} \quad u(c_{ij}, h_{ij}) = \frac{c_{ij}^{1-\gamma}}{1-\gamma} - \varphi \frac{h_{ij}^{1+\sigma}}{1+\sigma} \]

Enough to compare distributions of \((c, h)\) before and after the shift

Percentage of Lifetime Consumption

Risk Aversion (γ)

σ = 1
σ = 5

Heathcote-Storesletten-Violante, "From Wages to Welfare: Decomposing Gains and Losses From Rising Inequality" – p. 12/30
In the log case ($\gamma = 1$), $\omega \approx -2\%$ of lifetime consumption

A Lucas-style calculation

Since shift in hours distribution has small effect, ignore it for now

Assume log-normality of consumption: \(\log c \sim N\left(\frac{-\mu_c}{2}, \sigma_c^2\right) \)

\(\ast\) Battistin-Blundell-Stoker (2010)
A Lucas-style calculation

Since shift in hours distribution has small effect, ignore it for now

Assume log-normality of consumption: \(\log c \sim N(\frac{-v_c}{2}, v_c) \)

\(\ast \) Battistin-Blundell-Stoker (2010)

Following the derivations in Lucas (1987):

\[
\omega_L \approx -\frac{\gamma}{2} \Delta v_c
\]

\(\gamma = 1 \) and \(\Delta v_c = 0.036 \) \(\Rightarrow \) \(\omega_L = -1.8\% \)
A Lucas-style calculation

Since shift in hours distribution has small effect, ignore it for now

Assume log-normality of consumption: \(\log c \sim N(\frac{-v_c}{2}, v_c) \)

\(\bowtie \) Battistin-Blundell-Stoker (2010)

Following the derivations in Lucas (1987):

\[
\omega_L \approx -\frac{\gamma}{2} \Delta v_c
\]

\(\gamma = 1 \) and \(\Delta v_c = 0.036 \) \(\Rightarrow \) \(\omega_L = -1.8\% \)

Caveat: If the “revisionists” are correct and true rise in the variance of log consumption is twice as big \(\Rightarrow \omega_L = -3.6\% \)
THE STRUCTURAL APPROACH
Demographics, preferences, and education choice

- **Demographics**: Continuum of individuals indexed by i facing constant survival probability π from age j to $j + 1$
Demographics, preferences, and education choice

- **Demographics**: Continuum of individuals indexed by i facing constant survival probability π from age j to $j+1$

- **Preferences** over sequences of consumption and hours worked:

$$U = \mathbb{E}_0 \sum_{j=0}^{\infty} (\beta \pi)^j \left[\log(c_{ij}) - \varphi_i \frac{h_{ij}^{1+\sigma}}{1 + \sigma} \right]$$
Demographics, preferences, and education choice

- **Demographics**: Continuum of individuals indexed by i facing constant survival probability π from age j to $j+1$

- **Preferences** over sequences of consumption and hours worked:
 \[U = \mathbb{E}_0 \sum_{j=0}^{\infty} (\beta \pi)^j \left[\log(c_{ij}) - \varphi_i \frac{h_{ij}^{1+\sigma}}{1+\sigma} \right] \]

- Two education levels $e \in \{L, H\}$ denoting high-school and college
 - Idiosyncratic utility cost χ_i of attending college
 - Fraction q of individuals with $\chi_i < U_H - U_L$ chooses college
Technology and labor market

• CES aggregate technology:

\[Y = Z \left[\zeta N_H^\theta + (1 - \zeta) N_L^\theta \right]^{\frac{\theta}{\theta - 1}} \]

• Competitive labor markets: \(P_e = MPL_e \), with \(e \in \{L, H\} \)

\[\log \left(\frac{P_H}{P_L} \right) \equiv p_H - p_L = \log \left(\frac{\zeta}{1 - \zeta} \right) - \frac{1}{\theta} \log \left(\frac{N_H}{N_L} \right) \]

▶ Rise in \(\frac{\zeta}{1 - \zeta} \) represents skill-biased demand shifts

Individual wages

Log individual wage is the sum of three orthogonal components

$$\log w_{ij} = p_{e(i)} + \alpha_{ij} + \varepsilon_{ij}$$

- $p_{e(i)}$ is the log price per efficiency unit of labor of type e
- $(\alpha_{ij}, \varepsilon_{ij})$ shocks determining within-group wage dispersion
 - α follows a unit root process
 - ε is uncorrelated over time
Private risk-sharing

- Agents can save and borrow through a risk-free bond

- Additional private risk sharing (e.g., financial markets and family)
Private risk-sharing

- Agents can save and borrow through a risk-free bond

- Additional private risk sharing (e.g., financial markets and family)

- Equilibrium outcome: α uninsurable and ε insurable

Government

- Runs a **progressive tax/transfer scheme** to redistribute and to finance (non-valued) expenditures

- Balances the budget every period
Government

- Runs a **progressive tax/transfer scheme** to redistribute and to finance (non-valued) expenditures

- Balances the budget every period

- Relationship between pre-tax (y_i) and disposable (\tilde{y}_i) earnings:

\[
\tilde{y}_i = \lambda y_i^{1-\tau}
\]

- $\tau \geq 0$ is the **progressivity parameter** of the system

- Empirical fit of this tax/transfer system quite good on U.S. data
Summary of the model

- Three sources of shift in the wage structure:
 1. education differentials: \(\Delta \zeta \)
 2. uninsurable within-group differentials: \(\Delta v_\alpha \)
 3. insurable within-group differentials: \(\Delta v_\varepsilon \)
Summary of the model

• Three sources of shift in the wage structure:
 1. education differentials: $\Delta \zeta$
 2. uninsurable within-group differentials: Δv_α
 3. insurable within-group differentials: Δv_ε

• Four key channels of adjustment/insurance:
 1. education: q
 2. private risk-sharing: $\frac{v_\varepsilon}{v_\alpha}$
 3. flexible labor supply: σ
 4. progressive taxation: τ
Equilibrium allocations for consumption and hours

Individual allocations depend on \((e, \varphi, \alpha, \varepsilon)\), but not on wealth ⇒ tractability
Equilibrium allocations for consumption and hours

Individual allocations depend on \((e, \varphi, \alpha, \varepsilon)\), but not on wealth \(\Rightarrow\) tractability

\[
\log c(e, \varphi, \alpha) = \kappa_c + (1 - \tau) (p_e + \alpha - \varphi)
\]

- Consumption’s response to \((p_e, \alpha)\) mediated by progressivity
- Consumption invariant to insurable shock \(\varepsilon\)
Equilibrium allocations for consumption and hours

Individual allocations depend on \((e, \varphi, \alpha, \varepsilon)\), but not on wealth \(\Rightarrow\) tractability

\[
\log c(e, \varphi, \alpha) = \kappa_c + (1 - \tau)(p_e + \alpha - \varphi)
\]

- Consumption’s response to \((p_e, \alpha)\) mediated by progressivity
- Consumption invariant to insurable shock \(\varepsilon\)

\[
\log h(\varphi, \varepsilon) = \kappa_h - \varphi + \frac{1-\tau}{\sigma+\tau} \varepsilon
\]

- Hours respond to \(\varepsilon\) in proportion to tax-modified Frisch elasticity
- Hours invariant to skill price \(p_e\) and uninsurable shocks \(\alpha\)
Parametrization

- Use data on skill premium, enrollment, and (co-)variances of joint distribution of \((w, c, h)\) to recover values for structural parameters

Parametrization

- Use data on skill premium, enrollment, and (co-)variances of joint distribution of \((w, c, h)\) to recover values for structural parameters

<table>
<thead>
<tr>
<th>Model parameter</th>
<th>Value</th>
<th>Empirical moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \zeta)</td>
<td>0.11</td>
<td>(\Delta (p_H - p_L))</td>
</tr>
<tr>
<td>(\Delta v_\alpha)</td>
<td>0.05</td>
<td>(\Delta \text{var}^{\text{with}} (\log c))</td>
</tr>
<tr>
<td>(\Delta v_\varepsilon)</td>
<td>0.03</td>
<td>(\Delta \text{var}^{\text{with}} (\log w) - \Delta \text{var}^{\text{with}} (\log c))</td>
</tr>
<tr>
<td>((\mu_\chi, v_\chi))</td>
<td>(3.26, 6.20)</td>
<td>((q^*, \Delta q))</td>
</tr>
<tr>
<td>(\tau)</td>
<td>0.31</td>
<td>(\text{var} (\log \tilde{y}) / \text{var} (\log y))</td>
</tr>
</tbody>
</table>

- \(\sigma = 2 \Rightarrow \text{tax-modified Frisch elasticity } 1 - \frac{\tau}{\sigma + \tau} = 0.30\)

Welfare analysis

- **Neutrality conditions**: normalizations s.t. absent change in agents’ behavior, \((\Delta \zeta, \Delta v_\alpha, \Delta v_\varepsilon)\) leave average wage level unaffected
Welfare analysis

- **Neutrality conditions:** normalizations s.t. absent change in agents’ behavior, \((\Delta \zeta, \Delta v_\alpha, \Delta v_\varepsilon)\) leave average wage level unaffected

- Compare two steady-states, pre \((*)\) and post \((***)\) shift in wage structure, corresponding to 1980-1984 and 2001-2005

- Assume **Normal distributions** for \((\alpha, \varepsilon, \varphi, \log \chi)\)

- Plug \((c, h)\) allocations into social welfare function \(\mathcal{W}\), and from

\[
\mathcal{W}((1 + \omega)c^*, h^*) = \mathcal{W}(c^{**}, h^{**})
\]

solve for \(\omega\) in closed form as function of structural parameters
Analytical expression for ω

$$
\omega \approx -\frac{(1-\tau)^2}{2} \Delta \left[q (1-q) (p_H - p_L)^2 \right] - \frac{(1-\tau)^2}{2} \Delta v_{\alpha} \\
- \frac{\sigma}{2} \left(\frac{1-\tau}{\sigma + \tau} \right)^2 \Delta \varepsilon \\\n+ \left(\frac{1-\tau}{\sigma + \tau} \right) \Delta \varepsilon + \Delta \log \mathbb{E} [P_e] - (1-\pi) \Delta (\bar{\chi} q)
$$

... where tractability of the equilibrium model pays off
Interpreting each component of ω

$$\omega \approx -\frac{1}{2} (1 - \tau)^2 \Delta \left[q (1 - q) (p_H - p_L)^2 \right] \Delta \text{var}^{\text{bet}}(\log c)$$

$$- \frac{\sigma}{2} \left(\frac{1 - \tau}{\sigma + \tau} \right)^2 \Delta v_\varepsilon \Delta \text{var}(\log h)$$

$$+ \left(\frac{1 - \tau}{\sigma + \tau} \right) \Delta v_\varepsilon \left(\frac{\partial \log(Y/N)}{\partial v_\varepsilon} \right)$$

$$+ \Delta \log \mathbb{E}[P_\varepsilon] \left(\frac{\partial \log(Y/N)}{\partial \zeta} \right)$$

$$- (1 - \pi) \Delta (\bar{\chi}q) \Delta \text{edu cost}$$
Interpreting each component of ω

$$\omega \approx -\frac{1}{2} (1 - \tau)^2 \Delta \left[q (1 - q) (p_H - p_L)^2 \right] - \frac{1}{2} (1 - \tau)^2 \Delta v_\alpha$$

Welfare cost from rise in consumption inequality

$$-\frac{\sigma}{2} \left(\frac{1 - \tau}{\sigma + \tau} \right)^2 \Delta v_\varepsilon$$

Welfare cost from rise in hours inequality

$$+ \left(\frac{1 - \tau}{\sigma + \tau} \right) \Delta v_\varepsilon + \Delta \log \mathbb{E} [P_e] - (1 - \pi) \Delta (\bar{\chi} q)$$

Additional level effects from structural approach
Welfare calculation

\[
\omega \approx -\frac{1}{2} (1 - \tau)^2 \Delta \left[q (1 - q) (p_H - p_L)^2 \right] - \frac{1}{2} (1 - \tau)^2 \Delta v_\alpha
\]

\[
-2.2%
\]

\[
-\frac{\sigma}{2} \left(\frac{1 - \tau}{\sigma + \tau} \right)^2 \Delta v_\epsilon
\]

\[-0.3%
\]

\[
+ \left(\frac{1 - \tau}{\sigma + \tau} \right) \Delta v_\epsilon + \Delta \log \mathbb{E} [P_e] - (1 - \pi) \Delta (\bar{\chi}q)
\]

\[+3.0\%
\]

Gains (+3.9%) minus losses (−2.5%) ⇒ \(\omega = +1.4\% \) of lifetime consumption
Distribution of welfare gains and losses

• Our welfare calculation is a cross-sectional average

• How are welfare gains and losses distributed in the population?
Distribution of welfare gains and losses

- Our welfare calculation is a cross-sectional average

- How are welfare gains and losses distributed in the population?

<table>
<thead>
<tr>
<th>Indiv. type χ_i</th>
<th>Fraction of pop. ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L^* & H^* \rightarrow H^{**}$</td>
<td>0.28</td>
</tr>
<tr>
<td>$L^* \rightarrow L^{**}$</td>
<td>0.72</td>
</tr>
</tbody>
</table>

At least 70% of households (all <= HS grads) expect welfare losses
Role of insurance mechanisms

Shut down one insurance mechanism at a time and recompute ω
Role of insurance mechanisms

Shut down one insurance mechanism at a time and recompute ω

<table>
<thead>
<tr>
<th>Model</th>
<th>Insurance channel missing</th>
<th>ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>None</td>
<td>+1.4%</td>
</tr>
<tr>
<td>$\sigma = \infty$</td>
<td>Flexible labor supply</td>
<td>+0.8%</td>
</tr>
<tr>
<td>$\varepsilon \rightarrow \alpha$</td>
<td>Private risk-sharing</td>
<td>+0.1%</td>
</tr>
<tr>
<td>$\tau = 0$</td>
<td>Public insurance</td>
<td>+0.1%</td>
</tr>
<tr>
<td>$\Delta q = 0$</td>
<td>Rise in college enrollment</td>
<td>−6.0%</td>
</tr>
</tbody>
</table>

Private and public insurance equally important

Education choice paramount to take advantage of new wage structure

Heathcote-Storelletten-Violante, “From Wages to Welfare: Decomposing Gains and Losses From Rising Inequality” – p. 29/30
What did we learn?

• **Empirical approach too pessimistic** on the welfare consequences of the recent shift in the U.S. wage structure ($\omega = -2\%$)

• With model-based approach which quantifies “level effects”, average losses turn into average gains ($\omega = +1.4\%$)

• **Qualifier**: majority of individuals experienced significant losses (choice of welfare function matters!)

• **Policy**: promoting human capital investment vs. progressive taxes