Redistributive Taxation in a Partial-Insurance Economy

Jonathan Heathcote
Federal Reserve Bank of Minneapolis and CEPR

Kjetil Storesletten
Federal Reserve Bank of Minneapolis and CEPR

Gianluca Violante
New York University, CEPR and NBER

London School of Economics, May 28th 2010
Taxation

Two objectives for government taxation:

1. Financing the purchase of goods and services

2. Redistribution / “social insurance"
Taxation

Two objectives for government taxation:

1. Financing the purchase of goods and services
2. Redistribution / “social insurance"

Constraint:

1. The design of taxes and transfers must be sensitive to private incentives (Mirlees, 1971)

In light of this trade-off, how progressive should the tax system be?
Approach: Ramsey problem

• R.A. economy with benevolent government who takes C.E. allocations, G to be financed, and tax instruments as given

• Generalization:
 1. heterogeneous agents and incomplete markets
 2. government expenditures valued by households
 3. nonlinear tax/transfer system (conditional earnings)
Approach: Ramsey problem

- R.A. economy with benevolent government who takes C.E. allocations, G to be financed, and tax instruments as given

- Generalization:
 1. heterogeneous agents and incomplete markets
 2. government expenditures valued by households
 3. nonlinear tax/transfer system (conditional earnings)

- Our contribution: tractable equilibrium framework that delivers insights on the key economic forces shaping optimal progressivity

- Relationship with Mirleesian approach?
• Equilibrium heterogeneous-agents model featuring:

 1. differential “innate ability" + idiosyncratic productivity risk

 2. flexible labor supply and risk-free bond (self-insurance)
Preview of the model (based on HSV, 2009)

- Equilibrium heterogeneous-agents model featuring:
 1. differential “innate ability” + idiosyncratic productivity risk
 2. flexible labor supply and risk-free bond (*self-insurance*)
 3. additional risk-sharing (financial markets, family, institutions)
Preview of the model (based on HSV, 2009)

- **Equilibrium heterogeneous-agents model** featuring:

 1. differential “innate ability” + idiosyncratic productivity risk
 2. flexible labor supply and risk-free bond *(self-insurance)*
 3. additional risk-sharing (financial markets, family, institutions)
 4. government operates a nonlinear tax/transfer system to redistribute and finance the provision of a public good
Preview of the model (based on HSV, 2009)

- Equilibrium heterogeneous-agents model featuring:
 1. differential “innate ability" + idiosyncratic productivity risk
 2. flexible labor supply and risk-free bond (*self-insurance*)
 3. additional risk-sharing (financial markets, family, institutions)
 4. government operates a nonlinear tax/transfer system to redistribute and finance the provision of a public good
 5. no physical capital
Technology and resource constraint

- Aggregate technology linear in effective labor:

\[Y = \int w_i h_i di \equiv \int y_i di \]

- Resource constraint:

\[Y = \int c_i di + G \]
Individual labor productivity

- Individual endowments of **efficiency units** of labor:

\[
\ln w_{it} = \alpha_{it} + \varepsilon_{it}
\]
Individual labor productivity

- Individual endowments of efficiency units of labor:

\[\ln w_{it} = \alpha_{it} + \varepsilon_{it} \]

- \(\alpha_{it} \) component follows a unit root process

\[\alpha_{it} = \alpha_{i,t-1} + \omega_{it} \quad \text{with} \quad \omega_{it} \sim F_{\omega} \quad \text{and} \quad \alpha_{i0} \sim F_{\alpha_0} \]

- \(\varepsilon_{it} \) component can be any ARIMA process. We assume:

\[\varepsilon_{it} \quad \text{i.i.d.} \quad \text{with} \quad \varepsilon_{it} \sim F_{\varepsilon} \]
Individual labor productivity

- Individual endowments of **efficiency units** of labor:

\[\ln w_{it} = \alpha_{it} + \varepsilon_{it} \]

 - \(\alpha_{it} \) component follows a **unit root** process

\[\alpha_{it} = \alpha_{i,t-1} + \omega_{it} \quad \text{with} \quad \omega_{it} \sim F_\omega \quad \text{and} \quad \alpha_{i0} \sim F_{\alpha_0} \]

 - \(\varepsilon_{it} \) component can be any **ARIMA** process. We assume:

\[\varepsilon_{it} \quad \text{i.i.d.} \quad \text{with} \quad \varepsilon_{it} \sim F_\varepsilon \]

- Shocks i.i.d. across agents: L.L.N. \(\Rightarrow \) no aggregate fluctuations
Demographics and preferences

- **Perpetual youth** demographics with constant survival probability δ
 - Perfect annuity against survival risk
Demographics and preferences

• Perpetual youth demographics with constant survival probability δ
 - Perfect annuity against survival risk

• Preferences over sequences of private consumption, hours worked, and public good:

$$U(c_i, h_i, G) = \mathbb{E}_0 \sum_{t=0}^{\infty} (\beta \delta)^t u(c_{it}, h_{it}, G_t)$$

- with period-utility:

$$u(c_{it}, h_{it}, G_t) = \frac{c_{it}^{1-\gamma} - 1}{1-\gamma} - \varphi \frac{h_{it}^{1+\sigma}}{1+\sigma} + \chi \frac{G_t^{1-\gamma} - 1}{1-\gamma}$$
Financial assets

- Assets traded competitively (all in zero net supply)
 - Non-contingent bond
 - Complete set of insurance claims for ε shocks
Financial assets

• Assets traded competitively (all in zero net supply)
 ▶ Non-contingent bond
 ▶ Complete set of insurance claims for ε shocks

• Model encompasses a variety of economies
 ▶ $v_\alpha = v_\varepsilon = 0 \Rightarrow$ representative agent economy
 ▶ $v_\alpha = 0, v_\varepsilon > 0 \Rightarrow$ full insurance economy
 ▶ $v_\alpha > 0, v_\varepsilon = 0 \Rightarrow$ bond economy
 ▶ $v_\alpha > 0, v_\varepsilon > 0 \Rightarrow$ “partial insurance” economy

Heathcote-Storesletten-Violante, "Optimal Taxation" – p. 8/32
Taxes gross earnings through the function:

\[T(y_i; \tau, \lambda) = y_i - \lambda y_i^{1-\tau} \]

\[\tilde{y}_i \equiv y_i - T(y_i; \tau, \lambda) = \lambda y_i^{1-\tau} \]
• Taxes gross earnings through the function:

\[T(y_i; \tau, \lambda) = y_i - \lambda y_i^{1-\tau} \rightarrow \tilde{y}_i \equiv y_i - T(y_i; \tau, \lambda) = \lambda y_i^{1-\tau} \]

• Balances the budget (no government debt):

\[G = \int T(y_i; \tau, \lambda) di \]

• Chooses \((\tau, G)\) and \(\lambda\) is the residual instrument that balances the budget in equilibrium
Our model of fiscal redistribution

- The parameter τ measures the rate of progressivity:

$$\ln(\tilde{y}_i) = \text{constant} + (1 - \tau) \ln(y_i)$$

- $\tau = 1$: full redistribution ($\tilde{y}_i = \lambda$)
- $0 < \tau < 1$: partial redistribution (progressivity)
- $\tau = 0$: no redistribution (proportional tax $1 - \lambda$)
- $\tau < 0$: negative redistribution (regressivity)
Our model of fiscal redistribution

- The parameter τ measures the rate of progressivity:

$$\ln(\tilde{y}_i) = \text{constant} + (1 - \tau) \ln(y_i)$$

- $\tau = 1$: full redistribution ($\tilde{y}_i = \lambda$)
- $0 < \tau < 1$: partial redistribution (progressivity)
- $\tau = 0$: no redistribution (proportional tax $1 - \lambda$)
- $\tau < 0$: negative redistribution (regressivity)

- Marginal tax rate monotone in earnings: $T'(y) = 1 - \lambda(1 - \tau)y_i^{-\tau}$

- Zero marginal tax rate at earnings threshold $y^0 = \lambda^{\frac{1}{\tau}}$
Empirical relevance of our specification

- Estimated slope of model line ($R^2 = 0.88$) yields $\tau = 0.26$
Empirical relevance of our specification

- Estimated slope of model line \(R^2 = 0.88 \) yields \(\tau = 0.26 \)
Household’s Problem

\[V(\alpha, b) = \max_{c, h, b', B(\cdot)} \int_{\mathcal{E}} \left[u(c, h, G) + \delta \beta \int_{\Omega} V(\alpha + \omega, b') dF_\omega \right] dF_\varepsilon \]

subject to

\[\int_{\mathcal{E}} Q(\cdot) B(\cdot) d\varepsilon = b \]

\[c + q\delta b' = B(\varepsilon) + \lambda \cdot (\exp(\alpha + \varepsilon) h)^{1-\tau} \quad \forall \varepsilon \]

\[c \geq 0, \quad h \geq 0, \quad b' \geq -b \]

\[b_0 = 0 \]

A stationary C.E. is a set of allocations \((c, h, b', B)\), prices \((q, Q(\cdot))\) and a policy triplet \((G, \tau, \lambda)\) s.t. (i) given prices and policy agents optimize, (ii) markets clear, and (iii) the government budget is balanced.
Tractable “no bond trading” equilibrium

- Equilibrium allocations are function of \((\alpha, \varepsilon)\), but do not depend on wealth \(\Rightarrow\) tractability
Tractable “no bond trading” equilibrium

- Equilibrium allocations are function of \((\alpha, \varepsilon)\), but do not depend on wealth \(\Rightarrow\) tractability

- Micro-foundation for Constantinides and Duffie (JPE, 1996) who assume exogenous I(1) process for log-disposable income \(\tilde{y}_i\)
Tractable “no bond trading” equilibrium

• Equilibrium allocations are function of \((\alpha, \varepsilon)\), but do not depend on wealth ⇒ tractability

• Micro-foundation for Constantinides and Duffie (JPE, 1996) who assume exogenous I(1) process for log-disposable income \(\tilde{y}_i\)

• We start from ARIMA exogenous process for individual wages:
 1. Elastic labor supply: wages → earnings
 2. Private risk sharing: earnings → gross income
 3. Non-linear taxes: gross income → disposable income still I(1)

• No borrowing/saving: disposable income = consumption
Equilibrium risk-free rate r^* supporting this equilibrium

- Under log-normality of the shocks, closed form for r^*

- With inelastic labor supply ($\sigma = \infty$):

$$ - \frac{r^* - \rho}{\gamma} = (1 - \tau) \left(\gamma (1 - \tau) + 1 \right) \frac{v \omega}{2} $$

- Intertemporal dissaving motive = precautionary saving motive

- $\frac{\partial r^*}{\partial \tau} > 0$: more progressivity \Rightarrow less precautionary saving
Equilibrium allocations: hours worked

\[
\ln h^*(\alpha, \varepsilon) = \frac{1}{(1 - \tau) (\hat{\sigma}_\tau + \gamma)} \left[(1 - \gamma) \ln \lambda^*(\tau, G) + \ln(1 - \tau) - \varphi \right] - M_h(v_\varepsilon) + \frac{1}{\hat{\sigma}_\tau} \varepsilon + \frac{1 - \gamma}{\hat{\sigma}_\tau + \gamma} \alpha
\]

Representative agent

- Insurable shocks
- Uninsurable shocks
Equilibrium allocations: hours worked

\[
\ln h^*(\alpha, \varepsilon) = \frac{1}{(1 - \tau)(\hat{\sigma}_\tau + \gamma)} \left[(1 - \gamma) \ln \lambda^*(\tau, G) + \ln(1 - \tau) - \varphi\right]
\]

Representative agent

\[
- M_h(v_\varepsilon) + \frac{1}{\hat{\sigma}_\tau} \varepsilon + \frac{1 - \gamma}{\hat{\sigma}_\tau + \gamma} \alpha
\]

Insurable shocks Uninsurable shocks

• Response of hours worked to:

 ▶ insurable shocks depends on the tax-modified Frisch elasticity:

 \[
 \frac{1}{\hat{\sigma}_\tau} \equiv \frac{1 - \tau}{\sigma + \tau}
 \]

 ▶ uninsured shocks smaller as long as \(\gamma > 0 \)
Equilibrium allocations: consumption

\[
\ln c^*(\alpha) = \frac{1}{\hat{\sigma}_\tau + \gamma} [(1 + \hat{\sigma}) \ln \lambda^*(\tau, G) + \ln(1 - \tau) - \varphi] + M_c(v_\varepsilon) + \pi(\gamma, \sigma, \tau)\alpha
\]

Representative agent

Insurable shocks

Uninsurable shocks
Equilibrium allocations: consumption

\[\ln c^*(\alpha) = \frac{1}{\hat{\sigma}_T + \gamma} \left[(1 + \hat{\sigma}) \ln \lambda^*(\tau, G) + \ln(1 - \tau) - \varphi \right] \]

Representative agent

\[+ M_c(v_\varepsilon) + \pi(\gamma, \sigma, \tau) \alpha \]

Insurable shocks Uninsurable shocks

• Response of consumption to uninsurable wage shocks is:

\[\pi(\gamma, \sigma, \tau) = \left(1 - \tau \right) \frac{\sigma + 1}{\sigma + \gamma + \tau (1 - \gamma)} \]

TAXATION LABOR SUPPLY

Heathcote-Storesletten-Violante, "Optimal Taxation" – p. 16/32
Equilibrium allocations: consumption

\[
\ln c^*(\alpha) = \frac{1}{\hat{\sigma}_e + \gamma} \left[(1 + \hat{\sigma}) \ln \lambda^*(\tau, G) + \ln(1 - \tau) - \varphi \right]
\]

Representative agent

\[
\begin{align*}
+ M_c(v_e) & \quad + \pi(\gamma, \sigma, \tau) \alpha \\
\text{Insurable shocks} & \quad \text{Uninsurable shocks}
\end{align*}
\]

• Response of consumption to uninsurable wage shocks is:

\[
\pi(\gamma, \sigma, \tau) = (1 - \tau) \left[\frac{\sigma + 1}{\sigma + \gamma + \tau (1 - \gamma)} \right]
\]

- $\tau > 0 \Rightarrow$ consumption smoothing through taxation
- $\gamma > 1, \sigma < \infty \Rightarrow$ consumption smoothing through labor supply
Government’s problem

- Government chooses pair \((τ, G)\) to maximize social welfare s.t.:
 1. \((c^*, h^*)\) are competitive equilibrium allocations, given \((τ, G)\)
 2. the government budget constraint is satisfied
Government’s problem

• Government chooses pair \((\tau, G)\) to maximize social welfare s.t.:
 (i) \((c^*, h^*)\) are competitive equilibrium allocations, given \((\tau, G)\)
 (ii) the government budget constraint is satisfied

• Government puts weight \(\beta^t\) on expected utility of all agents born at dates \(t = -\infty, \ldots, \infty\)

• The surprise announcement of a new pair \((\tau, G)\) preserves no-bond trading equilibrium and hence transition is instantaneous
Government’s problem

- Government chooses pair \((\tau, G)\) to maximize social welfare s.t.:
 1. \((c^*, h^*)\) are competitive equilibrium allocations, given \((\tau, G)\)
 2. the government budget constraint is satisfied

- Government puts weight \(\beta^t\) on expected utility of all agents born at dates \(t = -\infty, \ldots, \infty\)

- The surprise announcement of a new pair \((\tau, G)\) preserves no-bond trading equilibrium and hence transition is instantaneous

- The Social Welfare Function becomes:

\[
W(\tau, G) \equiv \frac{1}{1 - \beta} \int \int u(c^*(\alpha; \tau, G), h^*(\alpha, \varepsilon; \tau, G), G) \, dF_\varepsilon \, dF_\alpha
\]
Solving the Ramsey problem

- **Assumptions:**
 a) log-normal shocks
 b) log-utility over private and public consumption ($\gamma = 1$)
Solving the Ramsey problem

• Assumptions:
 a) log-normal shocks
 b) log-utility over private and public consumption ($\gamma = 1$)

• WLOG, recast choice of G in terms of $g \equiv G/Y$

• $\mathcal{W}(\tau, g)$ is concave in g. It’s concave in τ if $\sigma \geq 2$
Solving the Ramsey problem

- **Assumptions:**
 a) log-normal shocks
 b) log-utility over private and public consumption ($\gamma = 1$)

- WLOG, recast choice of G in terms of $g \equiv G/Y$

- $W(\tau, g)$ is concave in g. It’s concave in τ if $\sigma \geq 2$

- **Roadmap:**
 1. Representative agent ($v_\alpha = v_\epsilon = 0$)
 2. Full insurance ($v_\alpha = 0, v_\epsilon > 0$)
 3. Partial insurance ($v_\alpha > 0, v_\epsilon > 0$)
Representative agent

\[\mathcal{W}^{RA}(\tau, g) = - (1 + \chi) \varphi + \frac{(1 + \chi) \ln(1 - \tau) - (1 - \tau)}{1 + \sigma} \]
\[+ \ln(1 - g) + \chi \ln g \]

- Welfare-maximizing fiscal policy is given by the pair:

\[g^* = \frac{\chi}{1 + \chi} \quad \text{Samuelson’s condition} \]
\[\tau^* = -\chi \quad \text{Regressive taxation} \]

- Regressive taxation mimics lump-sum taxation and achieves first best allocations.
Full insurance

\[W^{FI}(\tau, g) = W^{RA}(\tau, g) + (1 + \chi) \left[\frac{1}{\hat{\sigma}_\tau} v_\varepsilon - \sigma \left(\frac{1}{\hat{\sigma}_\tau^2} \right) \frac{v_\varepsilon}{2} \right] \]

\[\ln(Y/H) \]

\[\text{var}(\ln h) \]
Full insurance

\[\mathcal{W}^{FI}(\tau, g) = \mathcal{W}^{RA}(\tau, g) + (1 + \chi) \left[\frac{1}{\hat{\sigma}_\tau} \nu_{\hat{\varepsilon}} - \sigma \left(\frac{1}{\hat{\sigma}^2_\tau} \right) \frac{\nu_{\hat{\varepsilon}}}{2} \right] \]

\[
\frac{\ln(Y/H)}{\ln(Y/H)} \quad \text{var} \left(\ln h \right)
\]

- Second component of the welfare function maximized at \(\tau = 0 \)
 \[\Rightarrow \text{Labor misallocation minimized with linear tax} \]

- A stronger desire for \(G \) makes misallocation of labor more costly
Full insurance

\[W^{FI}(\tau, g) = W^{RA}(\tau, g) + (1 + \chi) \left[\frac{1}{\hat{\sigma}_\tau} v_\varepsilon - \sigma \left(\frac{1}{\hat{\sigma}_\tau^2} \right) \frac{v_\varepsilon}{2} \right] \ln(Y/H) \]

\[\text{var}(\ln h) \]

- Second component of the welfare function maximized at \(\tau = 0 \)
 \[\Rightarrow \text{Labor misallocation minimized with linear tax} \]

- A stronger desire for \(G \) makes misallocation of labor more costly

- Optimal public good provision is unchanged: \(g^* = \chi/(1 - \chi) \)
Partial insurance

\[\mathcal{W}(\tau, g) = \mathcal{W}^{FI}(\tau, g) - (1 - \tau)^2 \frac{\nu_\alpha}{2} \underbrace{\text{var(ln } c)}_{\text{var(ln } c)} \]
Partial insurance

\[W(\tau, g) = W^{FI}(\tau, g) - (1 - \tau)^2 \frac{\nu_\alpha}{2} \]

\[\text{var}(\ln c) \]

- \(\frac{\partial \tau^*}{\partial \nu_\alpha} > 0 \): more uninsurable risk ⇒ more progressivity

- Strictly positive solution for \(\tau^* \) only if \(\nu_\alpha > 0 \)
Partial insurance

\[\mathcal{W}(\tau, g) = \mathcal{W}^{FI}(\tau, g) - (1 - \tau)^2 \frac{v_\alpha}{2} \]

\[\text{var}(\ln c) \]

• \(\frac{\partial \tau^*}{\partial v_\alpha} > 0 \): more uninsurable risk \(\Rightarrow \) more progressivity

• Strictly positive solution for \(\tau^* \) only if \(v_\alpha > 0 \)

• Optimal public good provision is unchanged: \(g^* = \chi/(1 - \chi) \)
Summarizing

\[W(\tau, g) = W^{RA}(\tau, g) + (1 + \chi) \left[\frac{1}{\hat{\sigma}_\tau} v_\varepsilon - \sigma \left(\frac{1}{\hat{\sigma}_\tau^2} \right) \frac{v_\varepsilon}{2} \right] - (1 - \tau)^2 \frac{v_\alpha}{2} \]

\(\sum \)
Summarizing

\[W(\tau, g) = W^{RA}(\tau, g) + (1 + \chi) \left[\frac{1}{\hat{\sigma}_\tau} v_\varepsilon - \sigma \left(\frac{1}{\hat{\sigma}_\tau^2} \right) \frac{v_\varepsilon}{2} \right] - (1 - \tau)^2 \frac{v_\alpha}{2} \]

- Optimal rate of progressivity depends upon:

1. the desire for consuming public goods \((\chi)\): ↓

2. the size of labor supply distortions \((\sigma)\): →0

3. the amount of privately-provided insurance \((v_\varepsilon)\): →0

4. the amount of uninsurable risk \((v_\alpha)\): ↑
Progressive/regressive taxation with partial insurance?
Progressive/regressive taxation with partial insurance?

- Parameter space can be divided into two regions:

\[\chi > v\alpha(1 + \sigma) \quad \Rightarrow \quad \tau^* < 0 \]
\[\chi = v\alpha(1 + \sigma) \quad \Rightarrow \quad \tau^* = 0 \]
\[\chi < v\alpha(1 + \sigma) \quad \Rightarrow \quad \tau^* > 0 \]
Progressive/regressive taxation with partial insurance?

- Parameter space can be divided into two regions:

 \[
 \begin{align*}
 \chi &> v_\alpha(1+\sigma) \quad \Rightarrow \quad \tau^* < 0 \\
 \chi &= v_\alpha(1+\sigma) \quad \Rightarrow \quad \tau^* = 0 \\
 \chi &< v_\alpha(1+\sigma) \quad \Rightarrow \quad \tau^* > 0
 \end{align*}
 \]

- With \(v_\alpha = v_\varepsilon = 0.14 \) and \(\chi = 0.25 \) (\(\Rightarrow \) \(g^* = 0.2 \)):

 \[
 \begin{align*}
 \sigma = 0.8 &\quad \Rightarrow \quad \tau^* = 0.00 \text{ (proportional)} \\
 \sigma = 2.0 &\quad \Rightarrow \quad \tau^* = 0.07 \text{ (optimal)} \\
 \sigma = 6.3 &\quad \Rightarrow \quad \tau^* = 0.26 \text{ (actual US)}
 \end{align*}
 \]
Components of the welfare function

Healthcote-Storesletten-Violante, “Optimal Taxation” – p. 24/32
Average tax rate: actual US vs optimal

Heathcote-Storesletten-Violante, "Optimal Taxation" – p. 25/32
Relationship with Mirlees approach \((\nu_\varepsilon = 0) \)

- Our Ramsey-style approach
 - restricted tax schedule conditional on earnings
Relationship with Mirlees approach \((v_\varepsilon = 0)\)

- **Our Ramsey-style approach**
 - restricted tax schedule conditional on earnings

- **Mirlees approach**
 - \(\alpha\) unobservable \(\Rightarrow\) constrained-efficient allocations \(\Rightarrow\) unrestricted tax schedule conditional on earnings
Relationship with Mirlees approach \((v_\varepsilon = 0)\)

- **Our Ramsey-style approach**
 - restricted tax schedule conditional on earnings

- **Mirlees approach**
 - \(\alpha\) unobservable \(\Rightarrow\) constrained-efficient allocations \(\Rightarrow\)
 unrestricted tax schedule conditional on earnings

- **Complete markets**
 - \(\alpha\) observable \(\Rightarrow\) efficient allocations \(\Rightarrow\) unrestricted tax
 schedule conditional on \(\alpha\)

- In all three economies: \(g^* = \frac{G}{Y} = \frac{\chi}{1-\chi}\)
Allocations and implied taxes in 3 economies

Heathcote-Storesletten-Violante, "Optimal Taxation" – p. 27/32
Progressive consumption taxation

- President’s Advisory Panel on Tax Reform (2005) lists a *progressive consumed income tax* among its proposals.

- Implementation: progressive income tax with full deduction for savings.

- Argument: avoids distortions to capital accumulation, while retaining scope for redistribution.

- Additional argument: consumption taxes *redistribute wrt. uninsurable shocks* without distorting the efficient response of hours to insurable shocks.
Optimal progressive consumption taxation

- Household budget constraint:

\[y = \tilde{c} = \lambda c^{\frac{1}{1-\tau}} \]

where \(\tilde{c} \) are expenditures and \(c \) physical units

- Welfare in the partial insurance economy:

\[\mathcal{W}(\tau, g) = \mathcal{W}^{RA}(\tau, g) + (1 + \chi) \left[\frac{1}{\sigma} v_\varepsilon - \sigma \frac{1}{\sigma^2} \frac{v_\varepsilon}{2} \right] - (1 - \tau)^2 \frac{v_\alpha}{2} \]

\[\frac{1}{\sigma} \frac{v_\varepsilon}{\ln(Y/H)} - \frac{1}{\sigma^2} \frac{v_\varepsilon}{\var(\ln h)} - \frac{v_\alpha}{\var(\ln c)} \]

- No misallocation of labor under this tax scheme \(\Rightarrow \) one can achieve higher welfare than with income taxation
Political economics

• Policy is determined in a repeated voting game

• Each period the agent with median α picks (τ, G)
Political economics

• Policy is determined in a repeated voting game

• Each period the agent with median α picks (τ, G)

• No strategic interaction between successive median voters
 \Rightarrow each median voter solves a static maximization problem
Political economics

• Policy is determined in a repeated voting game

• Each period the agent with median α picks (τ, G)

• No strategic interaction between successive median voters
 \Rightarrow each median voter solves a static maximization problem

• The outcome of the voting game is equal to the Ramsey policy

• ... same redistribution, but for different motives:
 ▶ Ramsey planner values equality given utilitarian SWF
 ▶ Median voter benefits since $\alpha_{median} < \alpha_{mean} = 0$
Concluding remarks

- Tractable incomplete-markets model to study the two key roles of fiscal policy: redistribution and public good provision

- Analytical characterization of optimal fiscal policy
Concluding remarks

- Tractable incomplete-markets model to study the two key roles of fiscal policy: redistribution and public good provision

- Analytical characterization of optimal fiscal policy

- What’s next?
 - Solve model for general CRRA preferences ($\gamma \neq 1$)
 - Case where G is partly pure public good (e.g., defense), partly transfer (e.g., public education), and partly waste
 - Mirlees problem with observable/insurable shocks ε
 - Politico-economic analysis

Heathcote-Storesletten-Violante, “Optimal Taxation” – p. 31/32
Solving for competitive equilibrium

1. **Conjecture no bond-trade**: α uninsured and ε fully insured

2. Economy as continuum of groups indexed by α: within group, the Welfare Theorems apply
 - Use group-planner problem to derive allocations, taking tax function (λ^*) as given

3. Use agents FOC to back out “shadow” bond price for each group, i.e., $\mathbb{E}_t[MRS_{t,t+1}]$

4. **Verify** no-bond-trading equilibrium: check that shadow bond price is independent of island-specific characteristics

5. Given eq. allocations, solve for λ^* via aggregate government budget constraint