Optimal Welfare Programs with Search, Work, and Training

Nicola Pavoni
UCL and IFS

Ofer Setty
NYU

Gianluca Violante
New York University, CEPR and NBER

“Structural Models of the Labor Market and Policy Analysis”
Sandbjerg, October 8-11, 2009
Introduction

- Government expenditures on labor market policies in OECD countries amount to 3% of GDP (growing)

- Large variety of policy instruments targeting the unemployed

- Most governments use a mix of policy instruments
Introduction

• Government expenditures on labor market policies in OECD countries amount to 3% of GDP (growing)

• Large variety of policy instruments targeting the unemployed

• Most governments use a mix of policy instruments

• A welfare program is a government expenditure program that combines different policies

• A policy is a prescription of an activity (search, work, train, or rest) to the unemployed, with associated transfer
What we do

1. We develop a dynamic contracting framework to study welfare programs from a normative perspective

- An *optimal welfare program* maximizes the unemployed agent *ex-ante utility, for a given level of government expenditures*

⇒ Efficient choice of activity (use of available technologies) and transfers (incentive compatible provision of insurance)
What we do

1. We develop a dynamic contracting framework to study welfare programs from a normative perspective

 • An optimal welfare program maximizes the unemployed agent ex-ante utility, for a given level of government expenditures

 \[\Rightarrow\] Efficient choice of activity (use of available technologies) and transfers (incentive compatible provision of insurance)

2. We characterize:

 • optimal sequence of policies

 • optimal level and time-path of consumption (benefits during unemployment, taxes/subsidies upon re-employment)

3. We compare existing (U.S.) to efficient program: evaluation based on National Evaluation of Welfare-to-Work Strategies (NEWWS)
Preferences, endowments, markets

• Agent is infinitely lived, discounts future at rate $\beta = q$

• Intra-period utility $u(c) - a$

 ▶ Separable in consumption c and effort $a \in \{0, e\}$

 ▶ $u(\cdot)$ increasing, strictly concave, smooth, and u^{-1} has convex first derivative (Newman, 1995)

• Agent endowed with human capital h

• No access to either storage or borrowing
Production technologies

• Work activity requires effort e to be productive

• Effort during work $a \in \{0, e\}$ fully observable and contractible
Production technologies

- Work activity requires effort e to be productive
- Effort during work $a \in \{0, e\}$ fully observable and contractible
- Primary production technology
 - Output is $\omega(h)$, $\omega(\cdot)$ increasing in h
 - Access to this technology is frictional
Production technologies

• Work activity requires effort e to be productive

• Effort during work $a \in \{0, e\}$ fully observable and contractible

• Primary production technology
 ▶ Output is $\omega(h)$, $\omega(\cdot)$ increasing in h
 ▶ Access to this technology is frictional

• Secondary production technology
 ▶ Output is ω, independent of h
 ▶ Access to this technology is frictionless, i.e. readily available
Search technology

- Search activity yields at most one contact per period
- **Stock-flow approach** (Coles-Smith, 1999) in three stages:
 1. **Application**: number of job opportunities $\eta(h, a)$, where $\eta(h, e) > \eta(h, 0) \equiv 0$, $\eta(\cdot, e)$ increasing in h
 2. **Contact**: probability of being recontacted by firm μ
 3. **Hire**: upon contact, prob. of being retained by firm $\lambda(r)$, where worker’s action $r \in \{0, 1\}$ and $\lambda(1) = \lambda > \lambda(0) = 0$

\Rightarrow **Job finding probability**: $\pi(h, e, r) = \lambda(r)[1 - (1 - \mu)\eta(h, e)]$

- Both search effort a and retention action r are **private information** to the agent (and under her control)
Matching technology

- Matching is superior technology to search, but costly

- It allows to skip the first two steps of the search process i.e., application & re-contact

- Upon payment of κ^M, a contact is created without search effort

 - $\mu^M = 1 \Rightarrow$ job finding rate is $\lambda(r)$

 - Hire still subject to worker’s retention action
Human capital depreciation

• Except during primary employment, human capital depreciates deterministically at rate δ

 ▶ wage depreciation, since $\omega(h)$

 ▶ duration dependence in hazard rate, since $\pi(h, \cdot)$
Human capital depreciation

• Except during primary employment, human capital **depreciates deterministically** at rate δ

 ▶ wage depreciation, since $\omega(h)$

 ▶ duration dependence in hazard rate, since $\pi(h, \cdot)$

• Training technology offsets depreciation and rebuilds human capital
Principal-Agent relationship

• The risk-neutral principal offers a contract that specifies:

 1. use of technology: search, matching, secondary production
 2. recommendations on the effort level a and retention action r
 3. consumption (benefits and wage tax/subsidies) for agent
Principal-Agent relationship

• The risk-neutral principal offers a contract that specifies:
 1. use of technology: search, matching, secondary production
 2. recommendations on the effort level a and retention action r
 3. consumption (benefits and wage tax/subsidies) for agent

• Recursive formulation: three state variables
 1. (primary) employment status $s \in \{0, 1\}$ (with $s = 1$ absorbing)
 2. human capital $h \leftrightarrow$ duration d
 3. continuation utility U promised by the contract
Options of contract as policies of welfare program

• Combination of recommendations on effort, retention action \(r = 1 \), and use of search, matching and work technologies leads to five policy instruments:

 ▶ **UI** : Unemployment Insurance (search, high effort)
 ▶ **JA** : Job-search Aid (matching, low effort)
 ▶ **SA** : Social Assistance (no use of technologies, low effort)
 ▶ **MW** : Mandatory Work (work, high effort)
 ▶ **TW** : Transitory Work (matching+work, high effort)
Unemployment Insurance (UI)

\[V^{UI}(U, h) = \max_{c, U^s, U^f} -c + \beta \left[\pi(h, e) W(U^s, h') + (1 - \pi(h, e)) V(U^f, h') \right] \]

subject to

\[u(c) - e + \beta \left[\pi(h) U^s + (1 - \pi(h)) U^f \right] \geq u(c) + \beta U^f \quad (IC - S) \]

\[U = u(c) - e + \beta \left[\pi(h) U^s + (1 - \pi(h)) U^f \right] \quad (PK) \]

\[h' = (1 - \delta) h \]

where

\[V(U, h) = \max \{ V^{UI}(U, h), V^{JA}(U, h), V^{SA}(U, h), V^{MW}(U, h), V^{TW}(U, h) \} \]
Economic forces in the choice of policies

- Effort compensation cost (UI, TW, & MW): increasing in U
Economic forces in the choice of policies

- Effort compensation cost (UI, TW, & MW): increasing in U

- 'Net' returns to search/matching (UI, JA, & TW): increasing in h and decreasing in U
Economic forces in the choice of policies

- **Effort compensation cost** (UI, TW, & MW): increasing in U
- ‘Net’ returns to search/matching (UI, JA, & TW): increasing in h and decreasing in U
- **Incentive costs**

 Search (UI):
 \[U^s - U^f \geq \frac{e}{\beta \pi(h)} \]
 \[\text{(IC-S)} \]

 Retention (JA & TW):
 \[U^s \geq U^f \]
 \[\text{(IC-R)} \]

 - IC-S costs decreasing in h
 - Both IC-S and IC-R costs increasing in U, since u^{-1} has convex first derivative
Optimal policy transitions and benefits

• Proposition 1: *Without human capital depreciation*, there is no policy transition within an optimal welfare program, i.e. every policy is absorbing.
Optimal policy transitions and benefits

• **Proposition 1:** *Without human capital depreciation*, there is no policy transition within an optimal welfare program, i.e. every policy is absorbing.

• **Proposition 2:** *With human capital depreciation:*

 (i) SA and MW are absorbing policies

 (ii) the possible optimal policy sequences are:

 1. \(UI \rightarrow JA \rightarrow SA \)
 2. \(UI \rightarrow TW \rightarrow MW \)
Optimal policy transitions and benefits

• Proposition 1: Without human capital depreciation, there is no policy transition within an optimal welfare program, i.e. every policy is absorbing.

• Proposition 2: With human capital depreciation:
 (i) SA and MW are absorbing policies
 (ii) the possible optimal policy sequences are:

 1. $UI \rightarrow JA \rightarrow SA$
 2. $UI \rightarrow TW \rightarrow MW$

• Proposition 3: Optimal benefits are decreasing during UI and JA, and constant during SA, TW, and MW.
Application: United States

- Federal legislation attributes to States power to administer/design welfare programs

- *National Evaluation of Welfare-to-Work Strategies (NEWWS)*: government-sponsored large-scale longitudinal study based on random assignment of 40,000 individuals between 1991-1999 in five distinct U.S. locations

- Two sets of WTW programs with different features:
 - Labor Force Attachment (LFA): emphasis on work
 - Human Capital Developm. (HCD): emphasis on training