Exercise (What is wrong with the argument below?) This could have been an exam question.

Galor and Zeira claim the following: If the government subsidizes education of the young, by taxing the skilled when they are old, this is a Pareto improvement. Is it? What is wrong with the argument?

1. assume the tax rate is t, and that the government fully subsidizes education. If everyone gets an education (will they?), and there are L people then, for a balanced budget you need $twsL = Lh$, or $t = \frac{h}{ws}$.

2. The income of those who get an education is $(1-t)ws + x(1+r)$, since they do not pay for their education. Their utility is

$$U(x) = \log((1-t)ws + x(1+r)) + \varepsilon$$

Given their bequest

$$x_{t+1} = (1-\alpha)((1-t)ws + x_t(1+r))$$

with long run steady state

$$x_s = \frac{(1-\alpha)(1-t)ws}{1 - (1-\alpha)(1+r)}$$

The utility of the unskilled would be

$$U_n(x) = \log((x + w_n)(1+r) + w_n) + \varepsilon$$

with long run steady state

$$x_n = \frac{(1-\alpha)[w_n(2+r)]}{1 - (1-\alpha)(1+r)}$$

Assume $1 - (1-\alpha)(1+r) > 0$, and

$$(1-t)ws + x(1+r) > (x + w_n)(1+r) + w_n$$

$$\left(1 - \frac{h}{ws}\right)ws = w_s - h > (w_n)(2 + r)$$

This says the value of an education is worth foregone wages. Now, under the tax system, everyone prefers to get an education.

The skilled with $x > h$ receive higher utility under the government tax system because

$$(1-t)ws + x(1+r) > w_s + (x - h)(1+r)$$

$$-tw_s > -h(1+r)$$

$$-h > -h(1+r)$$

$$1 < 1 + r$$

The skilled with $h \geq x$ had prior utility

$$U_s(x) = \log[w_s + (x - h)(1+i)] + \varepsilon$$

so for them to be better off
\[(1-t)w_s + x(1 + r) > w_s + (x - h)(1 + i)\]
\[(h - x)(1 + i) - tw_s + x(1 + r) > 0\]
\[(h - x)(1 + i) - h + x(1 + r) > 0\]
\[(h - x)i + rx > 0\]

So everyone is better off. What is wrong with this argument?