Aghion-Howitt: Derivation of value of firm with Poisson Hazard Rate

1. Distributional Assumption: If \(n \) persons do research, probability density function of an invention at time \(\tau \) is given by the Poisson density (see Aghion-Howitt, page 58):

\[
 f(\tau) = (\lambda n) e^{-(\lambda n)\tau}
\]

with cdf, for probability of an invention by time \(\tau \):

\[
 F(\tau) = 1 - e^{-(\lambda n)\tau}
 F(0) = 0, \quad F(\infty) = 1
\]

2. Profits if firm survives until \(T \):

\[
 \int_0^T \pi e^{-rs} ds = \frac{\pi}{r} (1 - e^{-rT})
\]

3. Expected value of firm is discounted profits summed over survival probabilities to each \(T \) (that is by probabilities that there is an invention exactly at \(T \), given by the density function above):

\[
 V = \int_0^\infty (\lambda n) e^{-(\lambda n)T} \int_0^T \pi e^{-rs} ds dT = \int_0^\infty (\lambda n) e^{-(\lambda n)T} \left(\frac{\pi}{r} (1 - e^{-rT}) \right) dT
\]

\[
 V = \frac{\pi}{r} \left(\int_0^\infty (\lambda n) e^{-(\lambda n)T} (1 - e^{-rT}) dT \right) = \int_0^\infty (\lambda n) e^{-(\lambda n)T} dT - \int_0^\infty (\lambda n) e^{-(r+\lambda n)T} dT
\]

\[
 = \frac{\pi}{r} \left[(0 + 1) - \left(0 + \frac{\lambda n}{r + \lambda n} \right) \right] = \frac{\pi}{r} \left(1 - \frac{\lambda n}{r + \lambda n} \right) = \frac{\pi}{r} \left(\frac{r}{r + \lambda n} \right) = \frac{\pi}{r + \lambda n}
\]

4. Therefore, the expected value of a firm:

\[
 V = \frac{\pi}{r + \lambda n}
 (r + \lambda n) V = \pi
 rV = \pi - (\lambda n) V
\]