Notes on the Huber-Eicker-White Procedure for Obtaining Consistent Estimates of OLS Standard Errors under Unrestricted Heteroskedasticity

Let the regression model be specified as

\[y = X\beta + \varepsilon, \]

where

- \(E(\varepsilon|X) = 0 \)
- \(E(\varepsilon\varepsilon'|X) = \sigma^2 \begin{bmatrix} \psi_{11} & 0 & \cdots & 0 \\ 0 & \psi_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \psi_{nn} \end{bmatrix} = \sigma^2 \Psi, \)

where the \(\psi_{ii} \) are unknown constants.

Let \(X \) be \(n \times k \), and let the rank of \(X \) be equal to \(k \). The model then consists of \(k + n \) unknown parameters, the \(k \) element coefficient vector \(\beta \) and the \(n \) conditional variance parameters in the \(\Psi \) matrix.

We know that the OLS estimator of \(\beta \), \(\hat{\beta} = (X'X)^{-1}X'y \), remains unbiased and consistent in this case. We also know that the covariance matrix of \(\hat{\beta} \) is given by

\[
V(\hat{\beta}|X) = \sigma^2(X'X)^{-1}X'\Psi X(X'X)^{-1}.
\]

(0.1)

Now we know the following. Let \(z \) be some unknown parameter, and let \(\tilde{z} \) be some random variable for which \(\text{plim} \ \tilde{z} = z \). Let \(g(z) \) be a known, “smooth” function of \(z \) - differentiability is more than enough. Then

\[
\text{plim} \ g(\tilde{z}) = g(z).
\]

This type of result is used repeatedly throughout the course.

If we let \(\Sigma = \sigma^2 \Psi \), then if we had a consistent estimator of \(\Sigma \), call it \(\hat{\Sigma} \), we could consistently estimate the covariance matrix \(V(\hat{\beta}|X, \Sigma) \) by \(V(\hat{\beta}|X, \hat{\Sigma}) \) since (1) we assume \(\text{plim}(\hat{\Sigma}) = \Sigma \) and (2) \(V(\hat{\beta}|X, \Sigma) \) is a known, differentiable function of \(\Sigma \). For reasons stated in class however, with \(n \) pieces of information (and only one observation per individual), we can never hope to consistently estimate
individual specific variances. This is a problem of incidental, or nuisance parameters, in which the dimension of the parameter space grows with sample size. Thus we cannot consistently estimate $\hat{\Sigma}$ and all appears lost.

This case is not so hopeless after all, as was recognized by the various authors cited in the title. They recognized that to consistently estimate $[0.1]$ didn’t require a consistent estimator for Σ, but rather only for $X'\Psi X$, which is after all a $k \times k$ matrix the size of which doesn’t increase in n. Note that if Σ is known, the the estimate of the asymptotic covariance matrix of $\hat{\beta}$ would be

$$
\hat{V}_n(\hat{\beta}|X) = \frac{1}{n} \left(\frac{X'_{n}X_{n}}{n} \right)^{-1} \frac{1}{n} X'\Sigma X \left(\frac{1}{n} X'X \right)^{-1}.
$$

To consistently estimate this quantity, what is required is a consistent estimator $Q^* = \text{plim}(Q^*_n)$, where

$$
Q^*_n = \frac{1}{n} X'_{n}\Sigma_n X_{n} = \frac{1}{n} \sum_{i=1}^{n} \sigma_i^2 x'_i x_i,
$$

where x_i is the i^{th} row of X [and so is of dimension $1 \times k$. Say that the true disturbances could be observed [i.e., we knew β]. Then each term in the above summation could be rewritten so that

$$
\sigma_i^2 x'_i x_i = E[\varepsilon_i^2 x'_ix_i|x_i]
$$

Under mild conditions on the behavior of the x_i, a law of large numbers [LLN] argument can be constructed to show that

$$
\text{plim} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i^2 x'_ix_i = \text{plim} \frac{1}{n} \sum_{i=1}^{n} \sigma_i^2 x'_ix_i.
$$

The final step involves replacing the unknown disturbances with consistent estimates of them. Since the OLS estimator remains consistent in the case of unrestricted heterogeneity, $\text{plim} \hat{\beta} = \beta$, which implies that the OLS $e_i = y - x_i \hat{\beta}$ will converge to $\varepsilon_i = y_i - x_i \beta$, and by the same token, $\text{plim}(e_i^2) = \varepsilon_i^2$. Then

$$
Q^* = \text{plim} \frac{1}{n} \sum_{i=1}^{n} \sigma_i^2 x'_ix_i
$$
\[
\begin{align*}
&= \plim \frac{1}{n} \sum_{i=1}^{n} e_i^2 x_i' x_i \\
&= \plim \frac{1}{n} \sum_{i=1}^{n} e_i^2 x_i' x_i.
\end{align*}
\]

All this implies the following. In sufficiently large samples, the covariance matrix of \(\hat{\beta} \) is well-approximated by

\[
\hat{V}_n(\hat{\beta}|X) \approx (X_n'X_n)^{-1} \sum_{i=1}^{n} e_i^2 x_i' x_i (X_n'X_n)^{-1}.
\] (0.2)

To compute this quantity, recognize that we have to first obtain the OLS residuals \(e \). Thus, first estimate \(\hat{\beta} \), obtain the residual vector, and to conserve memory, run through a DO LOOP in which the summation \(\sum_{i=1}^{n} e_i^2 x_i' x_i \) is formed. For example:

```plaintext
cum_mat = zeros(k,k);
i=1;
do until i gt n;
    cum_mat = cum_mat + e[i]' * x[i,] * x[i,];
i=i+1;
endo;
```

This will produce the matrix of the quadratic form given in (0.2). The rest should be straightforward.

This is a very useful result, and in the absence of any strong reasons to suspect that the homogeneity assumption is appropriate, standard errors computed in this manner should always be used [in cross-sectional types of analysis where an independence assumption is appropriate]. While standard errors computed under this assumption could be found to be larger or smaller than those computed under a homoskedasticity assumption, in standard practice you should expect to see the HEW standard errors to be a bit larger (say on the order of 10 percent).