MC2 - Core Macroeconomics: Homework 5
Dr. Gianluca Violante

The assignment is due Monday November 6th. To be handed in class at 3:00 pm to Nick Rau.

Exercise n. 1

Consider Romer’s endogenous growth model, and solve the associated Social Planner’s problem for \(g^* \), the optimal growth rate of the economy.

1) Compare \(g^* \) with \(g \), the growth rate of the economy under the decentralized equilibrium, and interpret the difference. Where do the two distortions of Romer’s economy (monopolistic competition and externality in \(R&D \)) show up?

Suppose a government want to correct these distortions by means of subsidies to firms financed by lump sum taxation to households. Obtain the equilibrium growth rates \(g \) with a subsidy \(\theta \) to:

2) production of final good \(y \)
3) purchase of each intermediate good \(x(i) \)
4) labour costs \(w_A \) in the research sector
5) Could any of the above subsidies modify agents’ incentives in order to achieve exactly the optimal growth rate \(g^* \)?

Exercise n. 2

Consider Romer’s model with the following twist. The firm-level production function of \(R&D \) is:

\[
\dot{a} = \delta (A^\beta L_A^{\lambda-1}) L_A.
\]

with \(0 < \beta, \lambda \leq 1 \). The meaning of this law of motion is that: first, past knowledge \(A \) does not increase future knowledge at a linear rate, but it has decreasing returns; second, at the level of the \(R&D \) sector also labor input \(L_A \) has decreasing marginal returns, because different firms might duplicate research activities and come up with the same idea. Thus, at the level of the sector, after aggregating:

\[
\dot{A} = \delta (A^\beta L_A^{\lambda-1}) L_A = \delta A^{\beta} L_A^\lambda.
\]

Assume also that \(L \) grows at a constant rate \(n \), exogenously.

1) Solve the model with these new assumptions and obtain the equilibrium growth rate \(g \).
2) Discuss the main differences between this growth rate and the one in the standard Romer’s model.
3) Do we still have an endogenous growth model?